48 research outputs found
Transcriptional Heterogeneity of Cryptococcus gattii VGII Compared with Non-VGII Lineages Underpins Key Pathogenicity Pathways
We thank Jose Munoz for his input on the analysis of the mouse RNA-seq enrichment. R.A.F. was supported by a Wellcome Trust-Massachusetts Institute of Technology (MIT) Postdoctoral Fellowship. M.C.F. and J.R. were supported by Medical Research Council grant MR/K000373/1. R.C.M. is supported by a Wolfson Royal Society Research Merit Award and by funding from the European Research Council under the European Union’s Seventh Framework Program (FP/2007-2013)/ERC (grant agreement no. 614562). This work was funded in part by NIAID grant U19AI110818 to the Broad Institute.Peer reviewedPublisher PD
Linking gastrointestinal microbiota and metabolome dynamics to clinical outcomes in paediatric haematopoietic stem cell transplantation
Background:
Haematopoietic stem cell transplantation is a curative procedure for a variety of conditions. Despite major advances, a plethora of adverse clinical outcomes can develop post-transplantation including graft-versus-host disease and infections, which remain the major causes of morbidity and mortality. There is increasing evidence that the gastrointestinal microbiota is associated with clinical outcomes post-haematopoietic stem cell transplantation. Herein, we investigated the longitudinal dynamics of the gut microbiota and metabolome and potential associations to clinical outcomes in paediatric haematopoietic stem cell transplantation at a single centre.
Results:
On admission (baseline), the majority of patients presented with a different gut microbial composition in comparison with healthy control children with a significantly lower alpha diversity. A further, marked decrease in alpha diversity was observed immediately post-transplantation and in most microbial diversity, and composition did not return to baseline status whilst hospitalised. Longitudinal trajectories identified continuous fluctuations in microbial composition, with the dominance of a single taxon in a significant proportion of patients. Using pam clustering, three clusters were observed in the dataset. Cluster 1 was common pre-transplantation, characterised by a higher abundance of Clostridium XIVa, Bacteroides and Lachnospiraceae; cluster 2 and cluster 3 were more common post-transplantation with a higher abundance of Streptococcus and Staphylococcus in the former whilst Enterococcus, Enterobacteriaceae and Escherichia predominated in the latter. Cluster 3 was also associated with a higher risk of viraemia. Likewise, further multivariate analysis reveals Enterobacteriaceae, viraemia, use of total parenteral nutrition and various antimicrobials contributing towards cluster 3, Streptococcaceae, Staphylococcaceae, Neisseriaceae, vancomycin and metronidazole contributing towards cluster 2. Lachnospiraceae, Ruminococcaceae, Bifidobacteriaceae and not being on total parenteral nutrition contributed to cluster 1. Untargeted metabolomic analyses revealed changes that paralleled fluctuations in microbiota composition; importantly, low faecal butyrate was associated with a higher risk of viraemia.
Conclusions:
These findings highlight the frequent shifts and dominations in the gut microbiota of paediatric patients undergoing haematopoietic stem cell transplantation. The study reveals associations between the faecal microbiota, metabolome and viraemia. To identify and explore the potential of microbial biomarkers that may predict the risk of complications post-HSCT, larger multi-centre studies investigating the longitudinal microbial profiling in paediatric haematopoietic stem cell transplantation are warranted
Characterisation of chemical composition and structural features of novel antimicrobial nanoparticles
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This is an open access article distributed under the Creative Commons Attribution License (CC BY 4.0) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Three antimicrobial nanoparticle types (AMNP0, AMNP1 and AMNP2) produced using the TesimaTM thermal plasma technology were investigated and their compositions determined using a combination of analytical methods. Scanning electron micrograph provided the morphology of these particles with observed sizes ranging from 10 – 50 nm. Whilst FTIR spectra confirmed the absence of polar bonds and organic impurities, strong Raman active vibrational bands at ca. 1604 and 1311 cm-1 ascribed to C-C vibrational motions were observed. Carbon signals resonated at δC126 ppm in solid state NMR spectra confirmed sp2 hybridised carbons were present in high concentration in two of the nanoparticle types (AMNP1 and AMNP2). X-ray powder diffraction suggested AMNP0 contains single phase WC in a high state of purity and multiple phases of WC/WC1-x were identified in both AMNP1 and AMNP2. Finally, XPS surface analyses revealed and quantified the elemental ratios in these composite formulations.Peer reviewe
A fast extraction-free isothermal LAMP assay for detection of SARS-CoV-2 with potential use in resource-limited settings
BACKGROUND: To retain the spread of SARS-CoV-2, fast, sensitive and cost-effective testing is essential, particularly in resource limited settings (RLS). Current standard nucleic acid-based RT-PCR assays, although highly sensitive and specific, require transportation of samples to specialised laboratories, trained staff and expensive reagents. The latter are often not readily available in low- and middle-income countries and this may significantly impact on the successful disease management in these settings. Various studies have suggested a SARS-CoV-2 loop mediated isothermal amplification (LAMP) assay as an alternative method to RT-PCR. METHODS: Four previously published primer pairs were used for detection of SARS-CoV-2 in the LAMP assay. To determine optimal conditions, different temperatures, sample input and incubation times were tested. Ninety-three extracted RNA samples from St. George's Hospital, London, 10 non-extracted nasopharyngeal swab samples from Great Ormond Street Hospital for Children, London, and 92 non-extracted samples from Queen Elisabeth Central Hospital (QECH), Malawi, which have previously been tested for SARS-Cov-2 by quantitative reverse-transcription RealTime PCR (qRT-PCR), were analysed in the LAMP assay. RESULTS: In this study we report the optimisation of an extraction-free colourimetric SARS-CoV-2 LAMP assay and demonstrated that a lower limit of detection (LOD) between 10 and 100 copies/µL of SARS-CoV-2 could be readily detected by a colour change of the reaction within as little as 30 min. We further show that this assay could be quickly established in Malawi, as no expensive equipment is necessary. We tested 92 clinical samples from QECH and showed the sensitivity and specificity of the assay to be 86.7% and 98.4%, respectively. Some viral transport media, used routinely to stabilise RNA in clinical samples during transportation, caused a non-specific colour-change in the LAMP reaction and therefore we suggest collecting samples in phosphate buffered saline (which did not affect the colour) as the assay allows immediate sample analysis on-site. CONCLUSION: SARS-CoV-2 LAMP is a cheap and reliable assay that can be readily employed in RLS to improve disease monitoring and management
SARS-CoV-2 infection and antibody seroprevalence in routine surveillance patients, healthcare workers and general population in Kita region, Mali: an observational study 2020–2021
Objective:
To estimate the degree of SARS-CoV-2 transmission among healthcare workers (HCWs) and general population in Kita region of Mali.
Design:
Routine surveillance in 12 health facilities, HCWs serosurvey in five health facilities and community serosurvey in 16 villages in or near Kita town, Mali.
Setting:
Kita region, western Mali; local health centres around the central (regional) referral health centre.
Participants:
Patients in routine surveillance, HCWs in local health centres and community members of all ages in populations associated with study health centres.
Main outcome measures:
Seropositivity of ELISA test detecting SARS-CoV-2-specific total antibodies and real-time RT-PCR confirmed SARS-CoV-2 infection.
Results:
From 2392 routine surveillance samples, 68 (2.8%, 95% CI: 2.2% to 3.6%) tested positive for SARS-CoV-2 by RT-PCR. The monthly positivity rate was 0% in June–August 2020 and gradually increased to 6% by December 2020 and 6.2% by January 2021, then declined to 5.5%, 3.3%, 3.6% and 0.8% in February, March, April and May 2021, respectively. From 397 serum samples collected from 113 HCWs, 175 (44.1%, 95% CI: 39.1% to 49.1%) were positive for SARS-CoV-2 antibodies. The monthly seroprevalence was around 10% from September to November 2020 and increased to over 40% from December 2020 to May 2021. For community serosurvey in December 2020, overall seroprevalence of SARS-CoV-2 antibodies was 27.7%. The highest age-stratified seroprevalence was observed in participants aged 60–69 years (45.5%, 95% CI: 32.3% to 58.6%). The lowest was in children aged 0–9 years (14.0%, 95% CI: 7.4% to 20.6%).
Conclusions:
SARS-CoV-2 in rural Mali is much more widespread than assumed by national testing data and particularly in the older population and frontline HCWs. The observation is contrary to the widely expressed view, based on limited data, that COVID-19 infection rates were lower in 2020–2021 in West Africa than in other settings
Evolutionary and functional history of the Escherichia coli K1 capsule
Escherichia coli is a leading cause of invasive bacterial infections in humans. Capsule polysaccharide has an important role in bacterial pathogenesis, and the K1 capsule has been firmly established as one of the most potent capsule types in E. coli through its association with severe infections. However, little is known about its distribution, evolution and functions across the E. coli phylogeny, which is fundamental to elucidating its role in the expansion of successful lineages. Using systematic surveys of invasive E. coli isolates, we show that the K1-cps locus is present in a quarter of bloodstream infection isolates and has emerged in at least four different extraintestinal pathogenic E. coli (ExPEC) phylogroups independently in the last 500 years. Phenotypic assessment demonstrates that K1 capsule synthesis enhances E. coli survival in human serum independent of genetic background, and that therapeutic targeting of the K1 capsule re-sensitizes E. coli from distinct genetic backgrounds to human serum. Our study highlights that assessing the evolutionary and functional properties of bacterial virulence factors at population levels is important to better monitor and predict the emergence of virulent clones, and to also inform therapies and preventive medicine to effectively control bacterial infections whilst significantly lowering antibiotic usage
Statistical analysis plan for the LAKANA trial : a cluster-randomized, placebo-controlled, double-blinded, parallel group, three-arm clinical trial testing the effects of mass drug administration of azithromycin on mortality and other outcomes among 1–11-month-old infants in Mali
Background: The Large-scale Assessment of the Key health-promoting Activities of two New mass drug administration regimens with Azithromycin (LAKANA) trial in Mali aims to evaluate the efficacy and safety of azithromycin (AZI) mass drug administration (MDA) to 1–11-month-old infants as well as the impact of the intervention on antimicrobial resistance (AMR) and mechanisms of action of azithromycin. To improve the transparency and quality of this clinical trial, we prepared this statistical analysis plan (SAP). Methods/design: LAKANA is a cluster randomized trial that aims to address the mortality and health impacts of biannual and quarterly AZI MDA. AZI is given to 1–11-month-old infants in a high-mortality setting where a seasonal malaria chemoprevention (SMC) program is in place. The participating villages are randomly assigned to placebo (control), two-dose AZI (biannual azithromycin-MDA), and four-dose AZI (quarterly azithromycin-MDA) in a 3:4:2 ratio. The primary outcome of the study is mortality among the intention-to-treat population of 1–11-month-old infants. We will evaluate relative risk reduction between the study arms using a mixed-effects Poisson model with random intercepts for villages, using log link function with person-years as an offset variable. We will model outcomes related to secondary objectives of the study using generalized linear models with considerations on clustering. Conclusion: The SAP written prior to data collection completion will help avoid reporting bias and data-driven analysis for the primary and secondary aims of the trial. If there are deviations from the analysis methods described here, they will be described and justified in the publications of the trial results. Trial registration: ClinicalTrials.gov ID NCT04424511 . Registered on 11 June 2020.Peer reviewe
Testing the effects of mass drug administration of azithromycin on mortality and other outcomes among 1–11-month-old infants in Mali (LAKANA) : study protocol for a cluster-randomized, placebo-controlled, double-blinded, parallel-group, three-arm clinical trial
Background: Mass drug administration (MDA) of azithromycin (AZI) has been shown to reduce under-5 mortality in some but not all sub-Saharan African settings. A large-scale cluster-randomized trial conducted in Malawi, Niger, and Tanzania suggested that the effect differs by country, may be stronger in infants, and may be concentrated within the first 3 months after treatment. Another study found no effect when azithromycin was given concomitantly with seasonal malaria chemoprevention (SMC). Given the observed heterogeneity and possible effect modification by other co-interventions, further trials are needed to determine the efficacy in additional settings and to determine the most effective treatment regimen. Methods: LAKANA stands for Large-scale Assessment of the Key health-promoting Activities of two New mass drug administration regimens with Azithromycin. The LAKANA trial is designed to address the mortality and health impacts of 4 or 2 annual rounds of azithromycin MDA delivered to 1–11-month-old (29–364 days) infants, in a high-mortality and malaria holoendemic Malian setting where there is a national SMC program. Participating villages (clusters) are randomly allocated in a ratio of 3:2:4 to three groups: placebo (control):4-dose AZI:2-dose AZI. The primary outcome measured is mortality. Antimicrobial resistance (AMR) will be monitored closely before, during, and after the intervention and both among those receiving and those not receiving MDA with the study drugs. Other outcomes, from a subset of villages, comprise efficacy outcomes related to morbidity, growth and nutritional status, outcomes related to the mechanism of azithromycin activity through measures of malaria parasitemia and inflammation, safety outcomes (AMR, adverse and serious adverse events), and outcomes related to the implementation of the intervention documenting feasibility, acceptability, and economic aspects. The enrolment commenced in October 2020 and is planned to be completed by the end of 2022. The expected date of study completion is December 2024. Discussion: If LAKANA provides evidence in support of a positive mortality benefit resulting from azithromycin MDA, it will significantly contribute to the options for successfully promoting child survival in Mali, and elsewhere in sub-Saharan Africa. Trial registration: ClinicalTrials.gov NCT04424511. Registered on 11 June 2020.publishedVersionPeer reviewe
A comparison of methods to assess the antimicrobial activity of nanoparticle combinations on bacterial cells
Copyright: © 2018 Bankier et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.BACKGROUND: Bacterial cell quantification after exposure to antimicrobial compounds varies widely throughout industry and healthcare. Numerous methods are employed to quantify these antimicrobial effects. With increasing demand for new preventative methods for disease control, we aimed to compare and assess common analytical methods used to determine antimicrobial effects of novel nanoparticle combinations on two different pathogens. METHODS: Plate counts of total viable cells, flow cytometry (LIVE/DEAD BacLight viability assay) and qPCR (viability qPCR) were used to assess the antimicrobial activity of engineered nanoparticle combinations (NPCs) on Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria at different concentrations (0.05, 0.10 and 0.25 w/v%). Results were analysed using linear models to assess the effectiveness of different treatments. RESULTS: Strong antimicrobial effects of the three NPCs (AMNP0-2) on both pathogens could be quantified using the plate count method and flow cytometry. The plate count method showed a high log reduction (>8-log) for bacteria exposed to high NPC concentrations. We found similar antimicrobial results using the flow cytometry live/dead assay. Viability qPCR analysis of antimicrobial activity could not be quantified due to interference of NPCs with qPCR amplification. CONCLUSION: Flow cytometry was determined to be the best method to measure antimicrobial activity of the novel NPCs due to high-throughput, rapid and quantifiable results.Peer reviewe