1,523 research outputs found

    Risk and Business Goal Based Security Requirement and Countermeasure Prioritization

    Get PDF
    Companies are under pressure to be in control of their assets but at the same time they must operate as efficiently as possible. This means that they aim to implement “good-enough security” but need to be able to justify their security investment plans. Currently companies achieve this by means of checklist-based security assessments, but these methods are a way to achieve consensus without being able to provide justifications of countermeasures in terms of business goals. But such justifications are needed to operate securely and effectively in networked businesses. In this paper, we first compare a Risk-Based Requirements Prioritization method (RiskREP) with some requirements engineering and risk assessment methods based on their requirements elicitation and prioritization properties. RiskREP extends misuse case-based requirements engineering methods with IT architecture-based risk assessment and countermeasure definition and prioritization. Then, we present how RiskREP prioritizes countermeasures by linking business goals to countermeasure specification. Prioritizing countermeasures based on business goals is especially important to provide the stakeholders with structured arguments for choosing a set of countermeasures to implement. We illustrate RiskREP and how it prioritizes the countermeasures it elicits by an application to an action case

    Robust vehicle suspension system by converting active and passive control of a vehicle to semi-active control ystem analytically

    Get PDF
    This research article deals with a simplified translational model of an automotive suspension system which is constructed by considering the translation motion of one wheel of a car. Passive Vehicle Suspension System is converted into Semi Active Vehicle System. Major advantage achieved by this system is that it adjusts the damping of the suspension system without the application of any actuator by using MATLAB® simulations. The semi-active control is found to control the vibration of suspension system very well

    An Optimal-Dimensionality Sampling for Spin-ss Functions on the Sphere

    Get PDF
    For the representation of spin-ss band-limited functions on the sphere, we propose a sampling scheme with optimal number of samples equal to the number of degrees of freedom of the function in harmonic space. In comparison to the existing sampling designs, which require 2L2{\sim}2L^2 samples for the representation of spin-ss functions band-limited at LL, the proposed scheme requires No=L2s2N_o=L^2-s^2 samples for the accurate computation of the spin-ss spherical harmonic transform~(ss-SHT). For the proposed sampling scheme, we also develop a method to compute the ss-SHT. We place the samples in our design scheme such that the matrices involved in the computation of ss-SHT are well-conditioned. We also present a multi-pass ss-SHT to improve the accuracy of the transform. We also show the proposed sampling design exhibits superior geometrical properties compared to existing equiangular and Gauss-Legendre sampling schemes, and enables accurate computation of the ss-SHT corroborated through numerical experiments.Comment: 5 pages, 2 figure

    Iterative Residual Fitting for Spherical Harmonic Transform of Band-Limited Signals on the Sphere: Generalization and Analysis

    Get PDF
    We present the generalized iterative residual fitting (IRF) for the computation of the spherical harmonic transform (SHT) of band-limited signals on the sphere. The proposed method is based on the partitioning of the subspace of band-limited signals into orthogonal subspaces. There exist sampling schemes on the sphere which support accurate computation of SHT. However, there are applications where samples~(or measurements) are not taken over the predefined grid due to nature of the signal and/or acquisition set-up. To support such applications, the proposed IRF method enables accurate computation of SHTs of signals with randomly distributed sufficient number of samples. In order to improve the accuracy of the computation of the SHT, we also present the so-called multi-pass IRF which adds multiple iterative passes to the IRF. We analyse the multi-pass IRF for different sampling schemes and for different size partitions. Furthermore, we conduct numerical experiments to illustrate that the multi-pass IRF allows sufficiently accurate computation of SHTs.Comment: 5 Pages, 7 Figure

    Investigation of electrical properties for cantilever-based piezoelectric energy harvester

    Get PDF
    In the present era, the renewable sources of energy, e.g., piezoelectric materials are in great demand. They play a vital role in the field of micro-electromechanical systems, e.g., sensors and actuators. The cantilever-based piezoelectric energy harvesters are very popular because of their high performance and utilization. In this research-work, an energy harvester model based on a cantilever beam with bimorph PZT-5A, having a substrate layer of structural steel, was presented. The proposed energy scavenging system, designed in COMSOL Multiphysics, was applied to analyze the electrical output as a function of excitation frequencies, load resistances and accelerations. Analytical modeling was employed to measure the output voltage and power under pre-defined conditions of acceleration and load resistance. Experimentation was also performed to determine the relationship between independent and output parameters. Energy harvester is capable of producing the maximum power of 1.16 mW at a resonant frequency of 71 Hz under 1g acceleration, having load resistance of 12 k Omega. It was observed that acceleration and output power are directly proportional to each other. Moreover, the investigation conveys that the experimental results are in good agreement with the numerical results. The maximum error obtained between the experimental and numerical investigation was found to equal 4.3%

    Heating of galactic gas by dark matter annihilation in ultracompact minihalos

    Full text link
    The existence of substructure in halos of annihilating dark matter would be expected to substantially boost the rate at which annihilation occurs. Ultracompact minihalos of dark matter (UCMHs) are one of the more extreme examples of this. The boosted annihilation can inject significant amounts of energy into the gas of a galaxy over its lifetime. Here we determine the impact of the boost factor from UCMH substructure on the heating of galactic gas in a Milky Way-type galaxy, by means of N-body simulation. If 1%1\% of the dark matter exists as UCMHs, the corresponding boost factor can be of order 10510^5. For reasonable values of the relevant parameters (annihilation cross section 3×1026 cm3 s13\times10^{-26} ~\textrm{cm}^3~ \textrm{s}^{-1}, dark matter mass 100 GeV, 10% heating efficiency), we show that the presence of UCMHs at the 0.1% level would inject enough energy to eject significant amounts of gas from the halo, potentially preventing star formation within \sim1 kpc of the halo centre.Comment: 14 pages, 3 figure

    New results on structure of low beta confinement Polywell cusps simulated by comsol multiphysics

    Get PDF
    AbstractThe Inertial electrostatic confinement (IEC) is one of the ways for fusion approaches. It is one of the various methods which can be used to confine hot fusion plasma. The advantage of IEC is that the IEC experiments could be done in smaller size facilities than ITER or NIF, costing less money and moving forward faster. In IEC fusion, we need to trap adequate electrons to confine the desired ion density which is needed for a fusion reactor. Polywell is a device which uses the magnetic cusp system and traps the required amount of electrons for fusion reactions. The purpose of this device is to create a virtual cathode in order to achieve nuclear fusion using inertial electrostatic confinement (Miley and Krupakar Murali, 2014). In this paper, we have simulated the low beta Polywell. Then, we examined the effects of coil spacing, coils current, electron injection energy on confinement time

    Social identity and psychosis: Explaining elevated rates of psychosis in migrant populations

    Get PDF
    � 2016 John Wiley & Sons Ltd A substantial body of literature suggests that migrants are at greater risk of developing psychotic symptoms, such as paranoia, compared to non-migrants. To date, researchers have been unable to identify the primary cause of this effect, finding scarce support for biological, diagnostic, and economic explanations. Social determinants have received little empirical attention in this domain, which we assert is a critical gap in the literature. Here, we propose that the social identity approach offers a framework to help explain the elevated rates of psychosis among migrants, and in turn inform policies and interventions to address this important mental health issue. We propose that cultural identities play a central role in mitigating the psychological precursors of psychosis and that disidentification and social disconnection subsequent to migration could initiate or exacerbate psychosis for multiple generations. We draw together research from social and clinical psychology to detail a social identity approach to psychosis in migrant populations, and make recommendations for future research
    corecore