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Abstract—This research article deals with a simplified 

translational model of an automotive suspension system 

which is constructed by considering the translation motion 

of one wheel of a car. Passive Vehicle Suspension System is 

converted into Semi Active Vehicle System. Major 

advantage achieved by this system is that it adjusts the 

damping of the suspension system without the application of 

any actuator by using MATLAB® simulations. The semi-

active control is found to control the vibration of suspension 

system very well.  

 

Index Terms—vibration control, translational model, vehicle 

suspension system, active control system, passive control 

system 

 

I. INTRODUCTION 

Suspension system separates the wheel of the vehicle 

form the vehicle body in order to avoid any jerks due to 

rough roads. They ensure the comfort of the passengers 

by absorbing shocks and dissipating them. A 

conventional vehicle Suspension System constitutes of a 

damper (energy dissipating element) and a helical or leaf 

spring (energy storing element) [1]. Since no energy can 

be added by these two elements, such suspension system 

is called passive vehicle suspension system.  

There are limitations of passive vehicle suspension 

system due to a compromise between spring rate and 

damping characteristics in order to achieve required 

output [2]. A single degree of freedom spring mass 

damper with high damping value can perform well in the 

vicinity of high frequency [3], [4]. Due to this 

compromise between spring rate and damping, active and 

semi-active systems are gaining reputations in the 

suspension systems. Passive and active suspension 

systems are shown in Fig. 1. 

Semi Active System utilizes external source of power 

for the sake of adjusting damping levels, for operating 

embedded controller and sensors attached. Controller 

detects the level of damping required by sending signal 

and automatically adjusting the damping level in a real 

time. In an automotive suspension this is achieved by the 

                                                           

use of an active damper that is attached in parallel to the 

conventional spring. 

In this research paper vehicle suspension model with 

semi active control system is established in MATLAB 

and finally their performance are compared on the basis 

of the result for the MATLAB. 

 

Figure 1.  Schematic diagram for passive and active system. 

II. MODELLING AND DESIGN OF SUSPENSION SYSTEM 

A. Physical Model of Passive Vehicle Suspension 

System 

 

Figure 2.  Free body diagram for quarter suspension system 
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A quarter vehicle suspension systems [5] are shown in 

Fig. 2. This model is used to check the performance of 

the other semi active systems. Linear spring is used to 

model the stiffness of the tire, axle, tire and other moving 

parts are represented by mass m1, suspension system by a 

spring, viscous damper and supported vehicle 

components by mass m2  [6]. 

In the model; 

K1 = spring constant showing stiffness of the tire 

m1 = mass of the car 

K2 = spring constant of the suspension spring 

m2= mass of the wheel of car 

determined as: 

4 s
2
 + 3.333 s + 3.333 

T(s) =     -------------------------------------               (1) 
s

4

 + 5.833 s
3

 + 9.833 s
2

 + 3.333 s + 3.333  

function for closed loop system is: 

4 s
2

 + 3.333 s + 3.333   

T(s) =       ---------------------------------------------   (2) 
s

4

 + 5.833 s
3

 + 13.83 s
2

 + 6.667 s + 6.667  

All the closed loop poles lie in left half of root locus 

diagram as shown in Fig. 3 so the system is stable. But 

response time is very high (less than a second is the 

requirement) as depicted in figure with blue curve. 

 

Figure 3. 
 

Time response for observer design.
 

B.
 

Controller Design
 

It is evident from the above discussion that assuming 

system depicted in Fig. 3 is stable and can be controlled 

by using either semi active or active system. Most 

common semi active control policy is Skyhook control. 

For this controller, introduce extra pole in a system so 

that the location of all closed loop poles can be controlled 

[7], [8]. This control system should be designed to have a 

maximum overshoot of 10% (but we designed it for 9.5% 

to avoid any non-linearity) and a settling time of .8 sec 

(design for .74sec) [9].
 

After solving by state space variable method the 

transfer function
 is: 

1.421e-014 s
3
 + 4 s

2
 + 3.333 s + 3.333 

T(s) =       ---------------------------------------------
  
       (3) 

s
4

 
+ 11.64 s

3

 
+ 91.11 s

2

 
+ 76.72 s + 67.71

 

Solving the above transfer function with MATLAB the 

time response diagram of the control system is shown in 

Fig. 4. It reveals a large steady state error but required 

time response. So system is controllable. Steady state 

error can be reduced via integral control but we switch to 

other systems to avoid complexity.  

 

Figure 4.  Loop poles and root loci. 

C. Controller Design 

To avoid cost and equipment observer design is 

preferred over controller design. Moreover it may as 

faster as 10 times than that of the controller [10, 11], so 

we find the results by designing an observer for the 

suspension system. 

Solving the above with required inputs, transfer 

function is obtained as below:

                -2.842e-014 s
3 + 4 s

2 + 3.333 s + 3.333 

G(s) =      -------------------------------------------------  (4) 

                     s
4
 + 108.9 s

3
 + 8217 s

2
 + 6861 s + 6771 

By solving the above transfer function for the observer 

design we have time response diagram for the observer. It 

is clear from the Fig. 5 that time response for the observer 

is nearly ten times higher than the previous one but 

steady state error is too higher which shows that system is 

highly unstable. 

 
Figure 5.  Time response diagram for a controller. 
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Transfer function for open loop system T(s) can 

be 

transfer 

This system shows a steady state error. So the 



III. SYSTEM ANALYSIS AND DICUSSION 

A. Nyquist Criterion  

The contribution due to Nyquist is of very 

mathematical nature and deals also with the system which 

is unstable in open loop. 

System whose open-loop frequency response loci do 

not encircle the -1 point will be stable in closed loop, i.e. 

their open loop gain is less than unity at the phase-

crossover frequency [12]. Loci of the system which 

encircle the -1 point are unstable in closed loop. Loci of 

the system which pass through the -1 point are marginally 

stable and will oscillate continuously at the phase-cross 

frequency [13]. The time response diagram of the control 

system is shown in Fig. 6 using MATLAB. 

 

Figure 6.  Stability via nquist. 

It reveals a large over shoot, settling time and 

oscillations. So system is unstable. In the compensated 

response the system has large steady state error and 

settling time. The Nyquist diagram is shown in Fig. 7. 

 

Figure 7.  Nyquist dagram. 

B. Bode Plot 

In bode plot the logarithm of the magnitude of transfer 

function is plotted against the logarithmic frequency 

function ω. The phase φ of the transfer function is plotted 

separately against the logarithmic frequency [14]. 

The transfer function is given by following equation: 

                4 s
2
 + 3.333 s + 3.333                                    

       G =  -------------------------------------------------(K)  (5) 

    s
4
 + 5.833 s

3
 + 9.833 s

2
 + 3.333 s + 3.33 

The logarithmic gain in dB vs. ω is drawn on one set of 

axis while the phase φ vs. ω is drawn on another set of 

axis. The Bode plot is shown in the Fig. 8.  

 

Figure 8.  Stability via bode plot 

C. Lag Compensator  

The purpose of a lag compensator is to improve the 

static error constant by increasing only the low frequency 

gain without any resulting instability and increase the 

phase margin of the system to yield the desired transient 

response [15]. Fig. 9 shows the time response of the lag 

compensated system using MATLAB. It reveals that the 

system has over shoot greater than 10% and settling time 

up to 10 second. So system is reasonably stable [16].  

 

Figure 9.  Lag cmpensator. 

D. Lead Compensator  

The purpose of a lead compensator is to increase the 

bandwidth with the increase in gain crossover frequency. 
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While the phase diagram is raised to higher frequencies 

that results in large phase margin and higher phase 

margin frequencies [17]. Lower percentage of overshoots 

with small peak times are obtained in the time domain. 

Fig. 10 shows the time response of a lead compensated 

system using MATLAB. It shows that the system has 

very less over shoot (up to 5%) and settling time less than 

0.5 second. So system is highly stable. 

 

Figure 10.  Lead compensator.  

E. Lag-Lead Compensator  

The designing technique of Lead and Lag 

compensation forms the basis for the designing of a lag-

lead compensator using frequency response technique 

[18].  

The frequency response curve is altered by the phase 

lead portion of the lag-lead compensator by the addition 

of phase lead angle and an increase in phase margin at the 

given crossover frequency. Attenuation is provided by the 

phase lag portion near and above the gain crossover 

frequency. The time response diagram of the lead 

compensated system is shown in Fig. 10 using MATLAB. 

It shows that the system has very less over shoot (up to 

5%) and settling time less than 0.5 second. So system is 

highly stable. 

 

Figure 11. 
 
Lag-lead compensator.

 

IV. CONCLUSIONS 

Following conclusions can be drawn from the current 

research work:  

a. The system is stable under lag, lead and lag-lead 

compensator. 

b. The best suited compensated design is lead 

compensation under which the system is 

exceptionally stable.  

c. It showed that the system has very less over shoot 

(up to 5%) and settling time less than 0.5 second. 
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