11 research outputs found

    Biosafety standards for working with Crimean-Congo haemorrhagic fever virus

    Get PDF
    In countries from which Crimean-Congo haemorrhagic fever (CCHF) is absent, the causative virus CCHF virus (CCHFV) is classified as a hazard group 4 agent and handled in containment level 4. In contrast, most endemic countries out of necessity have had to perform diagnostic tests under biosafety level (BSL) -2 or -3 conditions. In particular, Turkey and several of the Balkan countries have safely processed more than 100000 samples over many years in BSL-2 laboratories. It is therefore advocated that biosafety requirements for CCHF diagnostic procedures should be revised, to allow the required tests to be performed under enhanced BSL-2 conditions with appropriate biosafety laboratory equipment and personal protective equipment used according to standardized protocols in the affected countries. Downgrading of CCHFV research work from Cl-4, BSL-4 to Cl-3, BSL-3 should also be considered.Additional co-authors: Gülay Korukluoglu, Pieter Lyssen, Ali Mirazimi, Johan Neyts, Matthias Niedrig, Aykut Ozkul, Anna Papa, Janusz Paweska, Amadou A Sall, Connie S Schmaljohn, Robert Swanepoel, Yavuz Uyar, Friedemann Weber, Herve Zelle

    Molecular characterization of infectious bronchitis viruses isolated from broiler and layer chicken farms in Egypt during 2012

    Get PDF
    One of the major problems of avian infectious bronchitis virus (IBV) is the frequent emergence of new variants. In the present study 205 tracheal swabs and organs were collected from broilers and layers chicken farms during January to August 2012 from 19 governorates all over Egypt. The chickens demonstrated respiratory signs and mortality. Out of the examined samples, 130 of which (about 64%) of suspected farms were positive for IBV with real time RT-PCR. 13 IBV-positive samples were selected for further isolation and characterization. Isolation in specific pathogen free (SPF) embryos was carried out after studies three blind successive passages and the hypervariable region of spike protein1 (SP1) was amplified by RT-PCR and sequenced to study the genetic diversity between the isolated viruses. Phylogenetic analysis of the obtained sequences of 13 isolates compared with other IBV strains from the Middle East and worldwide reveled that 11 out of the 13 isolates had close relationship the Israeli variants (IS/885 and IS/1494/06) with nucleotide homology reached up to 89.9% and 82.3%, respectively. Only two isolates had close relationship with CR/88121 and 4/91 viruses with identities of 95% and 96%, respectively. This study indicates existence of two variant groups of IBV circulating in Egypt during 2012. Group I was similar but distinguishable from Israeli variant IS/885 and group II was related to 4/91 and CR/88121 vaccine strains. There was no geographical link between the 2 groups as they were distributed all over the country. These findings necessitate the need to revise the vaccination programs and control measures for IBV

    Development of reverse transcription recombinase polymerase amplification assay for avian influenza H5N1 HA gene detection

    No full text
    The 2006 outbreaks of H5N1 avian influenza in Egypt interrupted poultry production and caused staggering economic damage. In addition, H5N1 avian influenza viruses represent a significant threat to public health. Therefore, the rapid detection of H5 viruses is very important in order to control the disease. In this study, a qualitative reverse transcription recombinase polymerase amplification (RT-RPA) assay for the detection of hemagglutinin gene of H5 subtype influenza viruses was developed. The results were compared to the real-time reverse transcription polymerase chain reaction (RT-PCR). Anin vitrotranscribed RNA standard of 970 nucleotides of the hemagglutinin gene was developed and used to determine the assay sensitivity. The developed H5 RT-RPA assay was able to detect one RNA molecule within 7min, while in real-time RT-PCR, at least 90min was required. H5 RT-RPA assay did not detect nucleic acid extracted from H5 negative samples or from other pathogens producing respiratory manifestation in poultry. The clinical performance of the H5 RT-RPA assay was tested in 30 samples collected between 2014 and 2015; the sensitivity of H5 RT-RPA and real-time RT-PCR was 100%. In conclusion, H5 RT-RPA was faster than real-time RT-PCR and easily operable in a portable device. Moreover, it had an equivalent sensitivity and specificity

    Sequence analysis of Camelpox virus isolated in Egypt

    No full text
    In this study the collected skin sample from camel suffered from Camelpox virus (CPV) from different regions in Egypt (South Sina Governorate and Maruite camel Farm of the Dessert Research Center) and the propagated isolated virus on Vero cell line were characterized by employing Polymerase Chain Reaction (PCR) and sequencing. The causative agent was identified as CPV, based on A-type inclusion and C18L genes-specific PCRs and partial sequencing of the C18L gene, which clearly confirmed that the outbreaks were caused by CPV. Further, phylogenic analysis of partial C18L gene of the isolated CPV and the Vaccinal strain (Jouf-78) of CPV sequence have showed that the isolated CPV clustered together with other reported isolates of CPV on contrast the vaccinal strain clustered with other vaccinai virus

    Assessment of in vitro potency of inactivated Newcastle disease oil adjuvanted vaccines using hemagglutination test and blocking ELISA

    Get PDF
    Aim: The present study was aimed to establish a protocol for the evaluation of the in vitro potency of commercial inactivated Newcastle disease virus (NDV) oil-adjuvanted vaccines using hemagglutination test (HA) and blocking ELISA (B-ELISA) based on polyclonal antibodies. Materials and Methods: Aqueous phases from a total of 47 batches of inactivated NDV vaccines manufactured by 20 different companies were extracted with isopropyl myristate. The viral antigen in each sample was detected and quantified by a standard HA test and a B-ELISA assay. To verify the efficiency of the antigen extraction method used in the batches which showed HA and to test the validity of using in vitro antigen quantification by HA and B-ELISA tests, a subset of 13 batches (selected from the total 47 batches) was inoculated in groups of 3-4-week-old specific pathogen-free chickens using the recommended vaccine dose. The immunogenicity of the selected vaccine batches was assessed by the NDV-hemagglutination inhibition antibody titers in individual serum samples collected 4 weeks after vaccination. Further, the efficacy of the vaccines and their protection rates were determined by a challenge test carried out for the vaccinated chickens with the Egyptian 2012 isolate of the virulent NDV genotype VII. Results: A strong correlation was observed between HA titers and B-ELISA mean titers in the tested 47 batches (R2=0.817). This indicated the possibility of using the latter in vitro assays for vaccine potency assessment. The recommended protective NDV antigen titer measured by B-ELISA was determined to be 28 ELISA units per dose. The comparison between the HA titers of the aqueous extracts of test vaccines and the corresponding results of in vivo potency assays (i.e., immunogenicity and efficacy), including antibody titers in the serum of vaccinated birds, indicated that the efficiency of the antigen extraction used may interfere with obtaining a strong correlation between the in vitro and in vivo results. Conclusion: HA or B-ELISA tests can be used as rapid and cost-effective alternatives to traditional in vivo potency tests for vaccine potency assessment by quantifying the NDV antigen present in aqueous phase extracts of the tested vaccines. The latter in vitro protocol, however, requires efficient extraction of the antigen to be able to obtain good correlation with the traditional in vivo potency tests

    Protective efficacy of a prime-boost protocol using H5-DNA plasmid as prime and inactivated H5N2 vaccine as the booster against the Egyptian avian influenza challenge virus

    No full text
    In this study, a recombinant DNA plasmid was constructed, encoding for HA1 of a selected Egyptian H5N1 virus (isolated during the 2012 outbreaks). In the immunization and challenge experiments, SPF chickens received 1 or 2 doses of H5-DNA plasmid prime, and boosted with the inactivated H5N2 vaccine. Haemagglutination inhibition (HI) titers, protection levels, and the magnitude of virus shedding were compared to that of the chickens that received either DNA plasmid or inactivated H5N2 vaccine alone. H5N1 virus A/chicken/Egypt/128s/2012 (H5N1) highly pathogenic avian influenza (HPAI) clade 2.2.1/C was used for the challenge. Chickens immunized with 1 or 2 doses of H5-DNA vaccine failed to overcome the challenge with 0% and 10% protection, respectively. Quantitative real-time reverse transcription-PCR revealed virus shedding of 2.2 x 104 PCR copies/ml 3 days post challenge (dpc) in the only surviving bird from the group that received 2 doses of plasmid. However, chickens immunized with 1 or 2 doses of H5-DNA plasmid as prime and inactivated H5N2 vaccine as booster, showed 80% protection after challenge, with a viral shedding of 1.2 x 104 PCR copies/ml (1 dose) and 1.6 x 104 PCR copies/ml (2 doses) 3 dpc. The surviving birds in both groups did not shed the virus at 5 and 7 dpc. In H5N2-vaccinated chickens, protection levels were 70% with relatively high virus shedding (1.8 x 104 PCR copies/ml) 3 dpc. HI titers were protective to the surviving chickens. This study reports the efficacy of H5-DNA plasmid to augment reduction in viral shedding and to provide better protection when applied in a prime-boost program with the inactivated AI vaccine

    Microsoft Word - 27102014-00050-EN-Gumaa

    No full text
    Summary Brucellosis is one of the important zoonotic diseases among livestock. This study was carried out to estimate the prevalence of brucellosis and isolate Brucella spp. in sheep in Kassala state in the east of the Sudan. Two thousand and five serum samples were randomly collected from nine different localities. All serum samples were examined by the Rose Bengal plate test (RBPT) and the modified RBPT (mRBPT). Forty three (2.15%, 95% CI: 1.6, 3.0) and 68 (3.4%, 95% CI: 2.6, 4.2) samples were positive with the RBPT and the mRBPT, respectively. According to a known diagnostic sensitivity of Rev. sci. tech. Off. int. Epiz., 33 (3) Keywords Brucella abortus biovar 6 -Brucella melitensis biovar 2 -Brucellosis -Eastern Sudan -Epidemiology -Kassala state -LivestockReservoir host -Spillover host -Sub-Saharan Africa. Introduction Brucellosis is a contagious disease that infects animals and can be transmitted to humans. This zoonotic disease is caused by different species belonging to the genus Brucella (1). In 1887, Brucella melitensis was first isolated by David Bruce from the spleen of a hospitalised soldier in Malta and since then brucellosis has been an emerging disease (2). Today, the genus Brucella includes ten species: Brucella melitensis, B. abortus, B. suis, B. ovis, B. canis, B. neotomae, B. ceti, B. pinnipedialis, B. microti and B. inopinata (1, 3, 4, 5 Rev. sci. tech. Off. int. Epiz., 33 (3

    Biosafety standards for working with Crimean-Congo haemorrhagic fever virus

    Get PDF
    In countries from which Crimean-Congo haemorrhagic fever (CCHF) is absent, the causative virus CCHF virus (CCHFV) is classified as a hazard group 4 agent and handled in containment level 4. In contrast, most endemic countries out of necessity have had to perform diagnostic tests under biosafety level (BSL) -2 or -3 conditions. In particular, Turkey and several of the Balkan countries have safely processed more than 100000 samples over many years in BSL-2 laboratories. It is therefore advocated that biosafety requirements for CCHF diagnostic procedures should be revised, to allow the required tests to be performed under enhanced BSL-2 conditions with appropriate biosafety laboratory equipment and personal protective equipment used according to standardized protocols in the affected countries. Downgrading of CCHFV research work from Cl-4, BSL-4 to Cl-3, BSL-3 should also be considered.status: publishe

    Biosafety standards for working with Crimean-Congo hemorrhagic fever virus

    No full text
    In countries from which Crimean-Congo haemorrhagic fever (CCHF) is absent, the causative virus, CCHF virus (CCHFV), is classified as a hazard group 4 agent and handled in containment level (CL)-4. In contrast, most endemic countries out of necessity have had to perform diagnostic tests under biosafety level (BSL)-2 or -3 conditions. In particular, Turkey and several of the Balkan countries have safely processed more than 100 000 samples over many years in BSL-2 laboratories. It is therefore advocated that biosafety requirements for CCHF diagnostic procedures should be revised, to allow the tests required to be performed under enhanced BSL-2 conditions with appropriate biosafety laboratory equipment and personal protective equipment used according to standardized protocols in the countries affected. Downgrading of CCHFV research work from CL-4, BSL-4 to CL-3, BSL-3 should also be considered
    corecore