236 research outputs found

    Induction of protective immune responses against Schistosomiasis haematobium in hamsters and mice using cysteine peptidase-based vaccine

    Get PDF
    © 2015 Tallima, Dalton and El Ridi. One of the major lessons we learned from the radiation-attenuated cercariae vaccine studies is that protective immunity against schistosomiasis is dependent on the induction of T helper (Th)1-/Th2-related immune responses. Since most schistosome larval and adult-worm-derived molecules used for vaccination uniformly induce a polarized Th1 response, it was essential to include a type 2 immune response-inducing molecule, such as cysteine peptidases, in the vaccine formula. Here, we demonstrate that a single subcutaneous injection of Syrian hamsters with 200 μg active papain, 1 h before percutaneous exposure to 150 cercariae of Schistosoma haematobium, led to highly significant (P 50% in worm burden and worm egg counts in intestine. Immunization of hamsters with 20 μg recombinant glyceraldehyde 3-phosphate dehydrogenase (rSG3PDH) and 20 μg 2-cys peroxiredoxin-derived peptide in a multiple antigen peptide construct (PRX MAP) together with papain (20 μg/hamster), as adjuvant led to considerable (64%) protection against challenge S. haematobium infection, similar to the levels reported with irradiated cercariae. Cysteine peptidases-based vaccination was also effective in protecting outbred mice against a percutaneous challenge infection with S. haematobium cercariae. In two experiments, a mixture of Schistosoma mansoni cathepsin B1 (SmCB1) and Fasciola hepatica cathepsin L1 (FhCL1) led to highly significant (P < 0.005) reduction of 70% in challenge S. haematobium worm burden and 60% reduction in liver egg counts. Mice vaccinated with SmCB1/FhCL1/rSG3PDH mixture and challenged with S. haematobium cercariae 3 weeks after the second immunization displayed highly significant (P < 0.005) reduction of 72% in challenge worm burden and no eggs in liver of 8-10 mice/group, as compared to unimmunized mice, associated with production of a mixture of type 1-and type 2-related cytokines and antibody responses

    Praziquantel and Arachidonic Acid Combination — An Innovative Approach to the Treatment of Schistosomiasis

    Get PDF
    Schistosomiasis is a debilitating disease caused by trematode worms of the genus Schistosoma. Three members Schistosoma mansoni, Schistosoma haematobium, and Schistosoma japonicum are responsible for the great majority of human infections. Schistosomiasis is widespread in sub-Saharan Africa, several countries of the Middle East, South America, and South-East Asia. Vaccination against the infection would be the most reliable way to combat the infection and decrease or interrupt its transmission, but a commercial vaccine is still unavailable. Praziquantel (PZQ) is the only drug considered for schistosomiasis treatment as it is effective against the major human schistosomes, commercially available, cost-affordable, and elicits limited side-effects. Several reports documented the highly significant PZQ efficacy in treatment of light infections in areas of low S. mansoni and S. haematobium endemicity and PZQ use. Chemotherapy with PZQ alone of patients residing in regions of high schistosome endemicity and afflicted with light, moderate, or heavy infection is not efficacious. Accordingly, we propose implementation of cost-affordable arachidonic acid (ARA), a polyunsaturated omega-6 fatty acid and efficacious in vitro and in vivo schistosomicide, for oral therapy of children with Schistosoma mansoni and Schistosoma haematobium light infection, as adjunct to PZQ for cure of children with moderate and heavy infections, and for counteracting schistosome resistance to PZQ that arises in endemic areas exposed to repeated and intense PZQ mass treatment campaigns

    Induction of protective immune responses against schistosomiasis using functionally active cysteine peptidases

    Get PDF
    Each year schistosomiasis afflicts up to 600 million people in 74 tropical and sub-tropical countries, predominantly in the developing world. Yet we depend on a single drug, praziquantel, for its treatment and control. There is no vaccine available but one is urgently needed especially since praziquantel-resistant parasites are likely to emerge at some time in the future. The disease is caused by several worm species of the genus Schistosoma. These express several classes of papain-like cysteine peptidases, cathepsins B and L, in various tissues but particularly in their gastrodermis where they employ them as digestive enzymes. We have shown that sub-cutaneous injection of recombinant and functionally active Schistosoma mansoni cathepsin B1 (SmCB1), or a cathepsin L from a related parasite Fasciola hepatica (FhCL1), elicits highly significant protection (up to 73%) against an experimental challenge worm infection in murine models of schistosomiasis. The immune modulating properties of this subcutaneous injection can boost protection levels (up to 83%) when combined with other S. mansoni vaccine candidates, glyceraldehyde 3-phosphate dehydrogenase (SG3PDH) and peroxiredoxin (PRX-MAP). Here, we discuss these data in the context of the parasite's biology and development, and provide putative mechanism by which the native-like cysteine peptidase induce protective immune responses. © 2014 El Ridi, Tallima, Dalton and Donnelly

    Protective immune responses against Schistosoma mansoni infection by immunization with functionally active gut-derived cysteine peptidases alone and in combination with glyceraldehyde 3-phosphate dehydrogenase

    Get PDF
    © 2017 Tallima et al. Background: Schistosomiasis, a severe disease caused by parasites of the genus Schistosoma, is prevalent in 74 countries, affecting more than 250 million people, particularly children. We have previously shown that the Schistosoma mansoni gut-derived cysteine peptidase, cathepsin B1 (SmCB1), administered without adjuvant, elicits protection (>60%) against challenge infection of S. mansoni or S. haematobium in outbred, CD-1 mice. Here we compare the immunogenicity and protective potential of another gut-derived cysteine peptidase, S. mansoni cathepsin L3 (SmCL3), alone, and in combination with SmCB1. We also examined whether protective responses could be boosted by including a third non-peptidase schistosome secreted molecule, glyceraldehyde 3-phosphate dehydrogenase (SG3PDH), with the two peptidases. Methodology/Principal findings: While adjuvant-free SmCB1 and SmCL3 induced type 2 polarized responses in CD-1 outbred mice those elicited by SmCL3 were far weaker than those induced by SmCB1. Nevertheless, both cysteine peptidases evoked highly significant (P < 0.005) reduction in challenge worm burden (54–65%) as well as worm egg counts and viability. A combination of SmCL3 and SmCB1 did not induce significantly stronger immune responses or higher protection than that achieved using each peptidase alone. However, when the two peptidases were combined with SG3PDH the levels of protection against challenge S. mansoni infection reached 70–76% and were accompanied by highly significant (P < 0.005) decreases in worm egg counts and viability. Similarly, high levels of protection were achieved in hamsters immunized with the cysteine peptidase/SG3PDH-based vaccine. Conclusions/Significance: Gut-derived cysteine peptidases are highly protective against schistosome challenge infection when administered subcutaneously without adjuvant to outbred CD-1 mice and hamsters, and can also act to enhance the efficacy of other schistosome antigens, such as SG3PDH. This cysteine peptidase-based vaccine should now be advanced to experiments in non-human primates and, if shown promise, progressed to Phase 1 safety trials in humans

    Cysteine peptidases as schistosomiasis vaccines with inbuilt adjuvanticity

    Get PDF
    Schistosomiasis is caused by several worm species of the genus Schistosoma and afflicts up to 600 million people in 74 tropical and sub-tropical countries in the developing world. Present disease control depends on treatment with the only available drug praziquantel. No vaccine exists despite the intense search for molecular candidates and adjuvant formulations over the last three decades. Cysteine peptidases such as papain and Der p 1 are well known environmental allergens that sensitize the immune system driving potent Th2-responses. Recently, we showed that the administration of active papain to mice induced significant protection (P<0.02, 50%) against an experimental challenge infection with Schistosoma mansoni. Since schistosomes express and secrete papain-like cysteine peptidases we reasoned that these could be employed as vaccines with inbuilt adjuvanticity to protect against these parasites. Here we demonstrate that subcutaneous injection of functionally active S. mansoni cathepsin B1 (SmCB1), or a cathepsin L from a related parasite Fasciola hepatica (FhCL1), elicits highly significant (P<0.0001) protection (up to 73%) against an experimental challenge worm infection. Protection and reduction in worm egg burden were further increased (up to 83%) when the cysteine peptidases were combined with other S. mansoni vaccine candidates, glyceraldehyde 3-phosphate dehydrogenase (SG3PDH) and peroxiredoxin (PRX-MAP), without the need to add chemical adjuvants. These studies demonstrate the capacity of helminth cysteine peptidases to behave simultaneously as immunogens and adjuvants, and offer an innovative approach towards developing schistosomiasis vaccines. © 2014 El Ridi et al

    Preparation and in vivo Assessment of Nystatin-Loaded Solid Lipid Nanoparticles for Topical Delivery against Cutaneous Candidiasis

    Get PDF
    Solid lipid nanoparticles (SLNs) have gained great attention for the topical treatment of skin associated fungal infection as they facilitate the skin penetration of loaded drugs. Our work deals with the preparation of nystatin loaded solid lipid nanoparticles (NystSLNs) using the hot homogenization and ultrasonication method. The prepared NystSLNs were characterized in terms of entrapment efficiency, particle size, zeta potential, transmission electron microscopy, differential scanning calorimetry, rheological behavior and in vitro drug release. A stability study for 6 months was performed. A microbiological study was conducted in male rats infected with Candida albicans, by counting the colonies and examining the histopathological changes induced on the skin of infected rats. The results showed that SLNs dispersions are spherical in shape with particle size ranging from 83.26±11.33 to 955.04±1.09 nm. The entrapment efficiencies are ranging from 19.73±1.21 to 72.46±0.66% with zeta potential ranging from -18.9 to -38.8 mV and shear-thinning rheological Behavior. The stability studies done for 6 months showed that nystatin (Nyst) is a good candidate for topical SLN formulations. A least number of colony forming unit/ ml (cfu/ml) was recorded for the selected NystSLN compared to the drug solution and the commercial Nystatin® cream present in the market. It can be fulfilled from this work that SLNs provide a good skin targeting effect and may represent promising carrier for topical delivery of Nyst offering the sustained release and maintaining the localized effect, resulting in an effective treatment of cutaneous fungal infection

    Soluble egg antigen of Schistosoma Haematobium induces HCV replication in PBMC from patients with chronic HCV infection

    Get PDF
    BACKGROUND: This study was conducted to examine, in vitro , the effect of soluble egg antigen (SEA) of S. haematobium on intracellular HCV RNA load in peripheral mononuclear cells (PBMC) as well as on cell proliferation in patients with chronic HCV infection. METHODS: PBMC from 26 patients with chronic HCV infection were cultured for 72 hours in presence and absence of 50 μg SEA/ml medium. Intracellular HCV RNA quantification of plus and minus strands was assessed before and after stimulation. PBMC from five healthy subjects were cultured for 7 days, flow cytometric analysis of DNA content was used to assess the mitogenic effect of SEA on PBMC proliferation compared to phytoheamaglutinine (PHA). RESULTS: Quantification of the intracellular viral load showed increased copy number/cell of both or either viral strands after induction with SEA in 18 of 26 patients (69.2%) thus indicating stimulation of viral replication. Flow cytometric analysis showed that mean ± S.D. of percent values of cell proliferation was induced from 3.2 ± 1.5% in un-stimulated cells to 16.7 ± 2.5 % and 16.84 ± 1.7 % in cells stimulated with PHA and SEA respectively. CONCLUSION: the present study supports earlier reports on SEA proliferative activity on PBMC and provides a strong evidence that the higher morbidity observed in patients co-infected with schistosomiasis and HCV is related, at least in part, to direct stimulation of viral replication by SEA

    S. <i>mansoni</i> Schistosomula Antigens Induce Th1/Proinflammatory Cytokine Responses

    Get PDF
    Larvae of Schistosoma (schistosomula) are highly susceptible to host immune responses and are attractive prophylactic vaccine targets, although cellular immune responses against schistosomula antigens in endemic human populations are not well characterized. We collected blood and stool from 54 Schistosoma mansoni-infected Ugandans, isolated peripheral blood mononuclear cells and stimulated them for 24 hours with schistosome adult worm and soluble egg antigens (AWA and SEA), along with schistosomula recombinant proteins rSmKK7, Lymphocyte Antigen 6 isoforms (rSmLy6A and rSmLy6B), tetraspanin isoforms (rSmTSP6 and rSmTSP7). Cytokines, chemokines and growth factors were measured in the culture supernatants using a multiplex luminex assay, and infection intensity was determined before and at 1 year after praziquantel (PZQ) treatment using the Kato-Katz method. Cellular responses were grouped and the relationship between groups of correlated cellular responses and infection intensity before and after PZQ treatment was investigated. AWA and SEA induced mainly Th2 responses. In contrast, rSmLy6B, rSmTSP6 and rSmTSP7 induced Th1/pro-inflammatory responses. While recombinant antigens rSmKK7 and rSmLy6A did not induce a Th1/pro-inflammatory response, they had an association with pre-treatment infection intensity after adjusting for age and sex. Testing more schistosomula antigens using this approach could provide immune-epidemiology identifiers necessary for prioritizing next generation schistosomiasis vaccine candidates

    Do schistosome vaccine trials in mice have an intrinsic flaw that generates spurious protection data?

    Get PDF
    The laboratory mouse has been widely used to test the efficacy of schistosome vaccines and a long list of candidates has emerged from this work, many of them abundant internal proteins. These antigens do not have an additive effect when co-administered, or delivered as SWAP homogenate, a quarter of which comprises multiple candidates; the observed protection has an apparent ceiling of 40–50 %. We contend that the low level of maturation of penetrating cercariae (~32 % for Schistosoma mansoni) is a major limitation of the model since 68/100 parasites fail to mature in naïve mice due to natural causes. The pulmonary capillary bed is the obstacle encountered by schistosomula en route to the portal system. The fragility of pulmonary capillaries and their susceptibility to a cytokine-induced vascular leak syndrome have been documented. During lung transit schistosomula burst into the alveolar spaces, and possess only a limited capacity to re-enter tissues. The acquired immunity elicited by the radiation attenuated (RA) cercarial vaccine relies on a pulmonary inflammatory response, involving cytokines such as IFNγ and TNFα, to deflect additional parasites into the alveoli. A principal difference between antigen vaccine protocols and the RA vaccine is the short interval between the last antigen boost and cercarial challenge of mice (often two weeks). Thus, after antigen vaccination, challenge parasites will reach the lungs when both activated T cells and cytokine levels are maximal in the circulation. We propose that “protection” in this situation is the result of physiological effects on the pulmonary blood vessels, increasing the proportion of parasites that enter the alveoli. This hypothesis will explain why internal antigens, which are unlikely to interact with the immune response in a living schistosomulum, plus a variety of heterologous proteins, can reduce the level of maturation in a non-antigen-specific way. These proteins are “successful” precisely because they have not been selected for immunological silence. The same arguments apply to vaccine experiments with S. japonicum in the mouse model; this schistosome species seems a more robust parasite, even harder to eliminate by acquired immune responses. We propose a number of ways in which our conclusions may be tested
    corecore