15 research outputs found
Modulation of Endothelial Bone Morphogenetic Protein Receptor Type 2 Activity by Vascular Endothelial Growth Factor Receptor 3 in Pulmonary Arterial Hypertension
Background: Bone morphogenetic protein (BMP) signaling has multiple roles in the development and function of the blood vessels. In humans, mutations in BMP receptor type 2 (BMPR2), a key component of BMP signaling, have been identified in the majority of patients with familial pulmonary arterial hypertension (PAH). However, only a small subset of individuals with BMPR2 mutation develops PAH, suggesting that additional modifiers of BMPR2 function play an important role in the onset and progression of PAH. Methods: We used a combination of studies in zebrafish embryos and genetically engineered mice lacking endothelial expression of Vegfr3 to determine the interaction between vascular endothelial growth factor receptor 3 (VEGFR3) and BMPR2. Additional in vitro studies were performed by using human endothelial cells, including primary lung endothelial cells from subjects with PAH. Results: Attenuation of Vegfr3 in zebrafish embryos abrogated Bmp2b-induced ectopic angiogenesis. Endothelial cells with disrupted VEGFR3 expression failed to respond to exogenous BMP stimulation. Mechanistically, VEGFR3 is physically associated with BMPR2 and facilitates ligand-induced endocytosis of BMPR2 to promote phosphorylation of SMADs and transcription of ID genes. Conditional, endothelial-specific deletion of Vegfr3 in mice resulted in impaired BMP signaling responses, and significantly worsened hypoxia-induced pulmonary hypertension. Consistent with these data, we found significant decrease in VEGFR3 expression in pulmonary arterial endothelial cells from human PAH subjects, and reconstitution of VEGFR3 expression in PAH pulmonary arterial endothelial cells restored BMP signaling responses. Conclusions: Our findings identify VEGFR3 as a key regulator of endothelial BMPR2 signaling and a potential determinant of PAH penetrance in humans
Parkinson's Disease: Basic Pathomechanisms and a Clinical Overview
PD is a common and a debilitating degenerative movement disorder. The number of patients is increasing worldwide and as yet there is no cure for the disease. The majority of existing treatments target motor symptom control. Over the last two decades the impact of the genetic contribution to PD has been appreciated. Significant discoveries have been made, which have advanced our understanding of the pathophysiological and molecular basis of PD. In this chapter we outline current knowledge of the clinical aspects of PD and the basic mechanistic understanding
Priorities in Parkinson's disease research.
International audienceThe loss of dopaminergic neurons in the substantia nigra pars compacta leads to the characteristic motor symptoms of Parkinson's disease: bradykinesia, rigidity and resting tremors. Although these symptoms can be improved using currently available dopamine replacement strategies, there is still a need to improve current strategies of treating these symptoms, together with a need to alleviate non-motor symptoms of the disease. Moreover, treatments that provide neuroprotection and/or disease-modifying effects remain an urgent unmet clinical need. This Review describes the most promising biological targets and therapeutic agents that are currently being assessed to address these treatment goals. Progress will rely on understanding genetic mutations or susceptibility factors that lead to Parkinson's disease, better translation between preclinical animal models and clinical research, and improving the design of future clinical trials