7 research outputs found

    Stability-indicating micellar enhanced spectro-fluorometric determination of Daclatasvir in its tablet and spiked human plasma

    Get PDF
    A fast, simple and sensitive micellar enhanced spectrofluorimetric method is performed for the determination of Daclatasvir dihydrochloride (DAC) in its pharmaceutical dosage form and in spiked human plasma. The fluorescence intensity (FI) was measured at 367 nm after excitation at 300 nm. In aqueous solution, the FI of DAC was greatly enhanced by >110% in the presence of sodium dodecyl sulphate (SDS). The detection method was linear over the range of 12.93 to 161.60 ng/mL, with a limit of detection of 1.75 ng/mL. The proposed method was successfully applied to the determination of DAC in its pharmaceutical dosage form and the mean % recovery of DAC in spiked human plasma was 95.42 ± 2.52. The developed methodology was also extended to stress studies of DAC after exposure to different forced degradation conditions including acidic, alkaline, photolytic, thermal and oxidative environments

    Optimized polydopamine coating and DNA conjugation onto gold nanorods for single nanoparticle bioaffinity measurements

    Get PDF
    Gold nanorods (NRs) have attracted a great deal of interest for a variety of biomedical and sensing applications. However, developing robust methods for biofunctionalizing NRs has continued to be challenging, especially for NR–DNA conjugates. This is due to the presence of cetyltrimethylammonium bromide (CTAB), which plays an essential role in controlling the anisotropic particle growth. In this article, we systematically explore the growth of a polydopamine (PDA) layer on a range of NR surfaces, comparing different polyelectrolyte and alkanethiol coatings as well as direct CTAB displacement. This revealed that the PDA layer thickness and growth rate is strongly dependent on the underlying nanorod functionalization chemistry and allowed us to establish a preferred route for the creation of stable, non-aggregated suspensions of PDA-coated NRs. The utility of this platform was then demonstrated by self-assembling packed monolayers of single-stranded DNA on the outer surface. Both the surface attachment and bioactivity of the resulting NR–DNA conjugates was then demonstrated by performing bulk solution and single nanoparticle imaging fluorescence measurements

    Comparative HPTLC study for simultaneous determination of ivabradine and metoprolol using UV and fluorescence detectors

    No full text
    Abstract New, simple, accurate, sensitive and validated high performance thin layer chromatographic (HPTLC) method coupled with UV absorbance mode and fluorescence (FL) detectors which were used for simultaneous determination of ivabradine (IVA) and metoprolol (MET) in their bulk and pharmaceutical dosage form using TLC silica 60 F254 plates and non-fluorescent TLC silica gel 60 plates. The developing system was chloroform: methanol: formic acid: ammonia (8.5:1.5:0.2:0.1, v/v). Desnitometric analysis in UV absorbance mode was set at λ = 275 nm. While, fluorescence mode was performed with excitation at 260 nm for quantitative simultaneous determination of IVA and MET using optical filter K320. The retention factors values were 0.45 ± 0.05 and 0.89 ± 0.01 of IVA and MET, respectively. UV absorbance mode, linearity was 50.0–600.0 ng/band for IVA and 50.0–900.0 ng/band for MET. For fluorescence mode, the linearity ranges were 18.0–400.0 ng/band and 50.0–550.0 ng/band for IVA and MET; respectively. ICH guidelines were followed in respect to linearity and range, accuracy, precision and selectivity, limit of detection (LOD), limit of quantitation (LOQ) and robustness. The analytical eco-scale, green analytical procedure index (GAPI) and analytical greenness metric tools were used to assess the suggested method. The quantitative proposed method results showed there was no statistically significant difference at 95% confidence when compared to the reported method of high performance liquid chromatography (HPLC)

    Development of Green HPTLC method for simultaneous determination of a promising combination Tamsulosin and Mirabegron: stability-indicating assay was examined

    No full text
    Abstract Recently, mirabegron has been added to tamsulosin to treat overactive bladder in men with benign prostatic hypertrophy. A Rapid, selective, sensitive, and green high-performance thin-layer chromatography (HPTLC) approach was developed for the simultaneous determination of tamsulosin (TAM) and mirabegron (MIR) in pure and laboratory-prepared mixture. Complete separation was obtained on silica gel F254 using the solvent system methanol-ethyl acetate-ammonia (3:7:0.1, v/v). Short-wave ultraviolet light at 270 nm was used to view the chromatographic bands. For MIR and TAM, the suggested technique revealed compact spots with retention factor Rf values of 0.42 and 0.63, respectively. Within concentration ranges of 0.15–7.5 ”g/band and 0.05–2.5 ”g/band, good linearity was observed, with mean percentage recoveries of 100.04 ± 0.56 and 99.98% ± 0.95 for MIR and TAM, respectively. Green assessment of the developed HPTLC technique was estimated using different green analytical chemistry metrics such as Analytical eco-scale Analytical GREEness (AGREE), and Green Analytical Procedure Index (GAPI) metrics. The proposed method was effectively used as a stability-indicating assay to assess the presence of MIR and TAM in the pharmaceutical dosage form in the presence of their degradation product. The statistical analysis showed high precision and accuracy

    Evaluation of a quality improvement intervention to reduce anastomotic leak following right colectomy (EAGLE): pragmatic, batched stepped-wedge, cluster-randomized trial in 64 countries

    Get PDF
    Background Anastomotic leak affects 8 per cent of patients after right colectomy with a 10-fold increased risk of postoperative death. The EAGLE study aimed to develop and test whether an international, standardized quality improvement intervention could reduce anastomotic leaks. Methods The internationally intended protocol, iteratively co-developed by a multistage Delphi process, comprised an online educational module introducing risk stratification, an intraoperative checklist, and harmonized surgical techniques. Clusters (hospital teams) were randomized to one of three arms with varied sequences of intervention/data collection by a derived stepped-wedge batch design (at least 18 hospital teams per batch). Patients were blinded to the study allocation. Low- and middle-income country enrolment was encouraged. The primary outcome (assessed by intention to treat) was anastomotic leak rate, and subgroup analyses by module completion (at least 80 per cent of surgeons, high engagement; less than 50 per cent, low engagement) were preplanned. Results A total 355 hospital teams registered, with 332 from 64 countries (39.2 per cent low and middle income) included in the final analysis. The online modules were completed by half of the surgeons (2143 of 4411). The primary analysis included 3039 of the 3268 patients recruited (206 patients had no anastomosis and 23 were lost to follow-up), with anastomotic leaks arising before and after the intervention in 10.1 and 9.6 per cent respectively (adjusted OR 0.87, 95 per cent c.i. 0.59 to 1.30; P = 0.498). The proportion of surgeons completing the educational modules was an influence: the leak rate decreased from 12.2 per cent (61 of 500) before intervention to 5.1 per cent (24 of 473) after intervention in high-engagement centres (adjusted OR 0.36, 0.20 to 0.64; P < 0.001), but this was not observed in low-engagement hospitals (8.3 per cent (59 of 714) and 13.8 per cent (61 of 443) respectively; adjusted OR 2.09, 1.31 to 3.31). Conclusion Completion of globally available digital training by engaged teams can alter anastomotic leak rates. Registration number: NCT04270721 (http://www.clinicaltrials.gov)
    corecore