4 research outputs found

    Bcl-2 and β1-integrin predict survival in a tissue microarray of small cell lung cancer.

    Get PDF
    INTRODUCTION: Survival in small cell lung cancer (SCLC) is limited by the development of chemoresistance. Factors associated with chemoresistance in vitro have been difficult to validate in vivo. Both Bcl-2 and β(1)-integrin have been identified as in vitro chemoresistance factors in SCLC but their importance in patients remains uncertain. Tissue microarrays (TMAs) are useful to validate biomarkers but no large TMA exists for SCLC. We designed an SCLC TMA to study potential biomarkers of prognosis and then used it to clarify the role of both Bcl-2 and β(1)-integrin in SCLC. METHODS: A TMA was constructed consisting of 184 cases of SCLC and stained for expression of Bcl-2 and β(1)-integrin. The slides were scored and the role of the proteins in survival was determined using Cox regression analysis. A meta-analysis of the role of Bcl-2 expression in SCLC prognosis was performed based on published results. RESULTS: Both proteins were expressed at high levels in the SCLC cases. For Bcl-2 (n=140), the hazard ratio for death if the staining was weak in intensity was 0.55 (0.33-0.94, P=0.03) and for β(1)-integrin (n=151) was 0.60 (0.39-0.92, P=0.02). The meta-analysis showed an overall hazard ratio for low expression of Bcl-2 of 0.91(0.74-1.09). CONCLUSIONS: Both Bcl-2 and β(1)-integrin are independent prognostic factors in SCLC in this cohort although further validation is required to confirm their importance. A TMA of SCLC cases is feasible but challenging and an important tool for biomarker validation

    Chronic lung diseases are associated with gene expression programs favoring SARS-CoV-2 entry and severity

    Get PDF
    Patients with chronic lung disease (CLD) have an increased risk for severe coronavirus disease-19 (COVID-19) and poor outcomes. Here, we analyze the transcriptomes of 611,398 single cells isolated from healthy and CLD lungs to identify molecular characteristics of lung cells that may account for worse COVID-19 outcomes in patients with chronic lung diseases. We observe a similar cellular distribution and relative expression of SARS-CoV-2 entry factors in control and CLD lungs. CLD AT2 cells express higher levels of genes linked directly to the efficiency of viral replication and the innate immune response. Additionally, we identify basal differences in inflammatory gene expression programs that highlight how CLD alters the inflammatory microenvironment encountered upon viral exposure to the peripheral lung. Our study indicates that CLD is accompanied by changes in cell-type-specific gene expression programs that prime the lung epithelium for and influence the innate and adaptive immune responses to SARS-CoV-2 infection

    Comprehensive molecular characterization of the hippo signaling pathway in cancer

    Get PDF
    Hippo signaling has been recognized as a key tumor suppressor pathway. Here, we perform a comprehensive molecular characterization of 19 Hippo core genes in 9,125 tumor samples across 33 cancer types using multidimensional “omic” data from The Cancer Genome Atlas. We identify somatic drivers among Hippo genes and the related microRNA (miRNA) regulators, and using functional genomic approaches, we experimentally characterize YAP and TAZ mutation effects and miR-590 and miR-200a regulation for TAZ. Hippo pathway activity is best characterized by a YAP/TAZ transcriptional target signature of 22 genes, which shows robust prognostic power across cancer types. Our elastic-net integrated modeling further reveals cancer-type-specific pathway regulators and associated cancer drivers. Our results highlight the importance of Hippo signaling in squamous cell cancers, characterized by frequent amplification of YAP/TAZ, high expression heterogeneity, and significant prognostic patterns. This study represents a systems-biology approach to characterizing key cancer signaling pathways in the post-genomic era
    corecore