22 research outputs found

    Biodentine Reduces Tumor Necrosis Factor Alpha-induced TRPA1 Expression in Odontoblastlike Cells

    Get PDF
    International audienceIntroduction: The transient receptor potential (TRP) ion channels have emerged as important cellular sensors in both neuronal and non-neuronal cells, with TRPA1 playing a central role in nociception and neurogenic inflammation. The functionality of TRP channels has been shown to be modulated by inflammatory cytokines. The aim of this study was to investigate the effect of inflammation on odontoblast TRPA1 expression and to determine the effect of Biodentine (Septodent, Paris, France) on inflammatory-induced TRPA1 expression. Methods: Immunohistochemistry was used to study TRPA1 expression in pulp tissue from healthy and carious human teeth. Pulp cells were differentiated to odontoblastlike cells in the presence of 2 mmol/L beta-glycerophosphate, and these cells were used in quantitative polymerase chain reaction, Western blotting, calcium imaging, and patch clamp studies. Results: Immunofluorescent staining revealed. TRPA1 expression in odontoblast cell bodies and odontoblast processes, which was more intense in carious versus healthy teeth. TRPA1 gene expression was induced in cultured odontoblastlike cells by tumor necrosis factor alpha, and this expression was significantly reduced in the presence of Biodentine. The functionality of the TRPA1 channel was shown by calcium microfluorimetry and patch clamp recording, and our results showed a significant reduction in tumor necrosis factor alpha induced TRPA1 responses after Biodentine treatment. Conclusions: In conclusion, this study showed TRPA1 to be modulated by caries-induced inflammation and that Biodentine reduced TRPA1 expression and functional responses

    Evidence That a TRPA1-Mediated Murine Model of Temporomandibular Joint Pain Involves NLRP3 Inflammasome Activation

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-10-14, pub-electronic 2021-10-23Publication status: PublishedFunder: Versus Arthritis; Grant(s): 21541This study investigates the role of transient receptor potential ankyrin 1 (TRPA1) in murine temporomandibular joint (TMJ) inflammatory hyperalgesia and the influence of the NLR family pyrin domain-containing 3 (NLRP3) inflammasome. Two distinct murine models of TMJ pain and inflammation (zymosan and CFA) were established. Spontaneous pain-like behaviours were observed as unilateral front paw cheek wipes. Ipsilateral cheek blood flow was used as a measure of ongoing inflammation, which, to our knowledge, is a novel approach to assessing real-time inflammation in the TMJ. Joint tissue and trigeminal ganglia were collected for ex vivo investigation. Both zymosan and CFA induced a time-dependent increase in hyperalgesia and inflammation biomarkers. Zymosan induced a significant effect after 4 h, correlating with a significantly increased IL-1ÎČ protein expression. CFA (50 ”g) induced a more sustained response. The TRPA1 receptor antagonist A967079 significantly inhibited hyper-nociception. The NLRP3 inhibitor MCC950 similarly inhibited hyper-nociception, also attenuating inflammatory markers. In the trigeminal ganglia, CFA-induced CGRP expression showed trends of inhibition by A967079, whilst lba1 immunofluorescence was significantly inhibited by A967079 and MCC950, where the effect of TRPA1 inhibition lasted up to 14 days. Our results show that stimulation of TRPA1 is key to the TMJ pain. However, the inflammasome inhibitor exhibited similar properties in attenuating these pain-like behaviours, in addition to some inflammatory markers. This indicates that in addition to the therapeutic targeting of TRPA1, NLRP3 inhibition may provide a novel therapeutic strategy for TMJ inflammation and pain

    Treatment of pulpal and apical disease: The European Society of Endodontology (ESE) S3-level clinical practice guideline.

    Get PDF
    BackgroundThe ESE previously published quality guidelines for endodontic treatment in 2006; however, there have been significant changes since not only in clinical endodontics but also in consensus and guideline development processes. In the development of the inaugural S3-level clinical practice guidelines (CPG), a comprehensive systematic and methodologically robust guideline consultation process was followed in order to produce evidence-based recommendations for the management of patients presenting with pulpal and apical disease.AimTo develop an S3-level CPG for the treatment of pulpal and apical disease, focusing on diagnosis and the implementation of the treatment approaches required to manage patients presenting with pulpitis and apical periodontitis (AP) with the ultimate goal of preventing tooth loss.MethodsThis S3-level CPG was developed by the ESE, with the assistance of independent methodological guidance provided by the Association of Scientific Medical Societies in Germany and utilizing the GRADE process. A robust, rigorous and transparent process included the analysis of relevant comparative research in 14 specifically commissioned systematic reviews, prior to evaluation of the quality and strength of evidence, the formulation of specific evidence and expert-based recommendations in a structured consensus process with leading endodontic experts and a broad base of external stakeholders.ResultsThe S3-level CPG for the treatment of pulpal and apical disease describes in a series of clinical recommendations the effectiveness of diagnosing pulpitis and AP, prior to investigating the effectiveness of endodontic treatments in managing those diseases. Therapeutic strategies include the effectiveness of deep caries management in cases with, and without, spontaneous pain and pulp exposure, vital versus nonvital teeth, the effectiveness of root canal instrumentation, irrigation, dressing, root canal filling materials and adjunct intracanal procedures in the management of AP. Prior to treatment planning, the critical importance of history and case evaluation, aseptic techniques, appropriate training and re-evaluations during and after treatment is stressed.ConclusionThe first S3-level CPG in endodontics informs clinical practice, health systems, policymakers, other stakeholders and patients on the available and most effective treatments to manage patients with pulpitis and AP in order to preserve teeth over a patient's lifetime, according to the best comparative evidence currently available

    Authors’ response

    No full text

    Potential Therapeutic Strategy of Targeting Pulp Fibroblasts in Dentin-Pulp Regeneration

    Get PDF
    International audienceFibroblasts represent the most abundant population within the dental pulp. Although other cell types such as odontoblasts and stem cells have been extensively investigated, very little attention was given to the fibroblasts, which have major roles in regulating the pulp biology and function under normal and pathologic conditions. Indeed, although pulp fibroblasts control the pulp vascularization and innervation under physiological conditions, these cells synthesize growth factors that enhance dentin-pulp regeneration, vascularization, and innervation. Pulp fibroblasts also represent a unique cell population because they are the only non-hepatic and non-immune cell type capable of synthesizing all complement proteins leading to production of biologically active fragments such as C3a, C5a, and membrane attack complex, which play major roles in the pulp regeneration processes. C3a fragment is involved in inducing the proliferation of both stem cells and pulp fibroblasts. It is also involved in stem cell mobilization and pulp fibroblast recruitment. C5a guides nerve sprouting and stem cell recruitment. The membrane attack complex fixes on cariogenic bacteria walls, leading to their direct destruction. These data demonstrate the central role played by pulp fibroblasts in regulating the dentin-pulp tissue by directly destroying cariogenic bacteria and by releasing bioactive fragments involved in nerve sprouting and stem cell recruitment and pulp regeneration. Taken together, this shows that targeting pulp fibroblasts represents a realistic strategy to induce complete dentin-pulp regeneration

    Endodontic 'Solutions'. Part 2:An audit comparing current practice in Belfast with UK and Republic of Ireland Dental Schools

    No full text
    Endodontic lubricants, irrigating solutions and medicaments help reduce the microbial load within root canals. Primary and secondary cases involve different microbes. Each ‘solution’ or combinations thereof could play a significant role but no detailed guidelines exist on their use. An audit was undertaken to compare current practice in Belfast Dental School to the others across the UK and Republic of Ireland (ROI). This audit highlighted three main differences between Belfast and other dental schools. Many other institutions utilized other irrigants besides sodium hypochlorite (NaOCl), different intracanal medicaments, including calcium hydroxide, and higher concentrations of NaOCl. Having gathered this information, we ask, ‘Is there sufficient evidence to change the endodontic regime currently used at Belfast Dental School?’. Using the findings from the literature review (Part 1), we introduce new evidence-based protocols for primary and secondary cases for use in Belfast Dental School. Clinical Relevance: In the absence of detailed clinical guidelines on the use of endodontic lubricants, irrigants and medicaments in primary and secondary cases, it is important to be aware of current practice in UK and ROI dental schools where dentists and specialists are trained. </jats:p

    Vital pulp treatment modalities: pulpotomy- partial and complete

    No full text
    The ability of the dental pulp to heal following injury is well documented in studies that laid the scientific foundation for pulp preservation therapies. Vital pulp treatments such as partial and complete pulpotomy have emerged as viable treatment options for mature teeth with exposed pulp and symptomatic pulpitis. The adoption, however, of these treatments in routine clinical practice is still controversial, with many questionnaire-based studies demonstrating a lack of consensus on the best approach to manage deep caries and exposed pulp. This chapter will demonstrate using an evidence-based approach appropriate case selection for partial and complete pulpotomy as well as detailed procedural and contemporary clinical protocols. An overview of treatment outcomes and factors that influence the outcomes is provided to help with treatment decisions and informed consent.<br/

    The role of extracellular matrix (ECM) adhesion motifs in functionalised hydrogels

    No full text
    To create functional tissue engineering scaffolds, biomaterials should mimic the native extracellular matrix of the tissue to be regenerated. Simultaneously, the survival and functionality of stem cells should also be enhanced to promote tissue organisation and repair. Hydrogels, but in particular, peptide hydrogels, are an emerging class of biocompatible scaffolds which act as promising self-assembling biomaterials for tissue engineering and regenerative therapies, ranging from articular cartilage regeneration at joint defects, to regenerative spinal cord injury following trauma. To enhance hydrogel biocompatibility, it has become imperative to consider the native microenvironment of the site for regeneration, where the use of functionalised hydrogels with extracellular matrix adhesion motifs has become a novel, emerging theme. In this review, we will introduce hydrogels in the context of tissue engineering, provide insight into the complexity of the extracellular matrix, investigate specific adhesion motifs that have been used to generate functionalised hydrogels and outline their potential applications in a regenerative medicine setting. It is anticipated that by conducting this review, we will provide greater insight into functionalised hydrogels, which may help translate their use towards therapeutic roles
    corecore