15 research outputs found

    Pharmacological and chemical properties of some marine echinoderms

    Get PDF
    Echinoderms have attracted the attention of scientists over the past few years after identifying a variety of unique structures endowed by interesting biological properties. However, the Moroccan coast biodiversity is still uninvestigated. In our ongoing attempts to valorize the rich Moroccan marine environment, this study aimed at assessing the antimicrobial activity of extracts obtained from three echinoderms Astropecten irregularis, Luidia sarsi and Ophiura albida against the human pathogens: Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica and Bacillus subtilis. Moreover, their antioxidant activities were tested using standard methods in addition to the antidiabetic activity which has been evaluated in vitro against α-amylase and α-glucosidase enzymes. HPLC-DAD-QTOF-MS analysis revealed a significant content of some phenolic compounds such as pyrogallol, gallic, sinapic, ferulic, p-hydroxybenzoic and salicylic acids whose existence can be related to the endophytic fungi and/or dietary intake whereas GC-MS analysis exhibited diverse chemical structures such as cholesterol, oleic acid and glycerol 1-palmitate

    MOLLUSCICIDAL AND LARVICIDAL ACTIVITIES OF Atriplex inflata AERIAL PARTS AGAINST THE MOLLUSK Galba truncatula, INTERMEDIATE HOST OF Fasciola hepatica

    Get PDF
    Fasciolosis is a widespread parasitosis of farm live-stock in many developing countries. For this reason, it is necessary to search for new substances against parasitic diseases caused by flukes. Indeed, a wide variety of terrestrial plants have been subjected to chemical and pharmacological screening in order to discover their potential for human medicinal use. The molluscicidal and larvicidal activities of Atriplex inflata were tested on Galba truncatula and Fasciola hepatica larval stages infecting this snail in Tunisia. Phytochemical tests were conducted on extracts in order to establish a meaningful relationship with molluscicidal and larvicidal activities. The molluscicidal activity was evaluated by subjecting snails to sample aqueous solutions. Accordingly, hexane, ethyl acetate, methanol and methanol-water (8:2, v-v) were used as extraction solvents. As a result, hexane and ethyl acetate extracts showed potent activity, according to the World Health Organization, giving LC50 = 7.59 mg/L and 6.69 mg/L for hexane extracts of leaves and fruits, respectively. Ethyl acetate extracts gave LC50 = 5.90 mg/L and 7.32 mg/L for leaves and fruits, successively. Molluscicidal activities of powders were less potent on snails, but active according to the World Health Organization. Hexane and ethyl acetate extracts from leaves and fruits gave potent larvicidal activities with a delay rate exceeding 45.50% (45.50- 98.92%). Phytochemical tests showed that these activities may be attributed to the presence of triterpenoids and/or sterols

    Synthesis, biological activity and molecular modeling of a new series of condensed 1,2,4-triazoles

    No full text
    A ring transformation of 6-methyl-7H[1,2,4]triazolo [4,3-b][1,2,4] triazepine-8(9H)-ones (thiones) in the presence of acetic anhydride give rise to a new series of 17 condensed 1,2,4-triazole derivatives (1–17). Plausible mechanisms are proposed and show the formation of a beta fused β-lactam moiety. The compounds were tested for their (i) inhibitory potential on digestive enzymes (α-amylase and α-glucosidase), and (ii) antioxidant activity using radical scavenging (DPPH and ABTS radicals) and ferric reducing power assays. The compounds showed interesting and promising antidiabetic activities compared to the reference drug Acarbose. Molecular docking study has been carried out to determine the binding mode interactions between these derivatives and the targeted enzymes. The results showed the strength of intermolecular hydrogen bonding in ligand-receptor complexes as an important descriptor in rationalizing the observed inhibition results. Moreover, molecular dynamics simulations are also performed for the best protein-ligand complex to understand the stability of small molecule in a protein environment. To shed light on the antioxidant activity of the synthesized compounds and the mechanism involved in DPPH free radical, DFT calculations were performed at the B3P86/6-311++G(d,p) level using the polarizable continuum model. The effect of aprotic solvent on bond dissociation enthalpies (BDEs) is investigated by calculating and comparing BDEs of 1 in methanol and dimethylsulfoxide as solvents using PCM. The obtained results show that the mechanism of action depends on the basic skeleton and the presence of substituted functional groups in these derivatives. BDEs are found to be slightly influenced by the aprotic solvent of less than 0.01 kcal/mol compared with those obtained in methanol. © 2019 Elsevier Inc
    corecore