7 research outputs found

    SPEED BUMP DETECTION FOR AUTONOMOUS VEHICLES USING SIGNAL-PROCESSING TECHNIQUES

    Get PDF
    Autonomous vehicle (AV) is one of the emerging technologies that have far-reaching applications and implications in smart cities. Among the current challenges of the Smart City, Traffic management is of utmost importance. AV technologies can decrease transportation cost and can be used for efficient management and control of traffic flows. Traffic management strongly depends on the road surface condition. Abnormalities in the road, such as manholes and potholes, can cause accidents when not identified by the drivers. Furthermore, human-induced abnormalities, such as speed bumps, could also cause accidents. Detecting road abnormalities provide safety to human and vehicles. Current researches on speed bump detection are based on using sensors, accelerometer and GPS. This makes them vulnerable to GPS error, network overload, delay and battery draining. To overcome these problems, we propose a novel method for speed bump detection that combines both image and signal processing techniques. The advantage of the proposed approach consists in detecting speed bumps accurately without using any special sensors, hardware, Smartphone and GPS

    Contribution to multiplatform deployement of muttitasking applications by high-Level execution services behavioral modeling

    No full text
    Face à la complexité des logiciels multitâches, liée aux contextes économique et concurrentiel très pressants, la portabilité des applications et la réutilisabilité des processus de déploiement sont devenues un enjeu majeur. L'ingénierie dirigée par les modèles est une approche qui aspire répondre à ces besoins en séparant les préoccupations fonctionnelles des systèmes multitâches de leurs préoccupations techniques, tout en maintenant la relation entre eux. En pratique, cela se concrétise par des transformations de modèles capables de spécialiser les modèles pour des plates-formes cibles. Actuellement, les préoccupations spécifiques à ces plates-formes sont décrites implicitement dans les transformations eux même. Par conséquence, ces transformations ne sont pas réutilisables et ne permettent pas de répondre aux besoins hétérogènes et évolutifs qui caractérisent les systèmes multitâches. Notre objectif est alors d'appliquer le principe de séparation de préoccupation au niveau même de la transformation des modèles, une démarche qui garantie la portabilité des modèles et la réutilisabilité des processus de transformation.Pour cela, cette étude propose premièrement une modélisation comportementale détaillée des plates-formes d'exécutions logicielles. Cette modélisation permet d'extraire les préoccupations spécifiques à une plate-forme de la transformation de modèle et les capturer dans un modèle détaillé indépendant et réutilisable. Dans un second temps, en se basant sur ces modèles, elle présente un processus générique de développement des systèmes concurrents multitâches. L'originalité de cette approche réside dans une véritable séparation des préoccupations entre trois acteurs à savoir le développeur des chaînes de transformation, qui spécifient une transformation de modèle générique, les fournisseurs des plates-formes qui fournissent des modèles détaillés de leurs plates-formes et le concepteur des applications multitâche qui modélise le système. A la fin de cette étude, une évaluation de cette approche permet de montrer une réduction dans le coût de déploiement des applications sur plusieurs plates-formes sans impliquer un surcoût de performance.Given the complexity of multitasked software, linked to very pressing economic and competitive contexts, application portability and deployment process reusability has become a major issue. The model driven engineering is an approach that aspires to meet these needs by separating functional concerns of multitasking systems from their technical concerns, while maintaining the relationship between them. In practice, this takes the form of model transformations that specializes models for target platforms. Currently, concerns specific to these platforms are described implicitly in the transformations themselves. Consequently, these transformations are not reusable and do not meet the heterogeneous evolutionary needs that characterize multitasking systems. Our objective is then to apply the principle of separation of concern even at the level of transformation models, an approach that guarantees portability and reusability of models transformation process.To do this, this study provides first a detailed behavioral modeling of software execution platform. This modeling allows to extract specific concerns from model transformation and to capture them in a detailed platform model independent and reusable. In a second step, based on these models, it presents a generic process for developing concurrent systems. The originality of this approach is a true separation of concerns between three actors: the developer of transformation tool, who specifies a generic model transformation, platform providers that provide detailed models of their platforms and the multitasked system designer that models the system. At the end of this study, an evaluation of this approach shows a reduction in the cost of deploying applications on multiple platforms without incurring an additional cost of performance

    Déploiement multiplateforme d'applications multitâche par la modélisation

    Get PDF
    Given the complexity of multitasked software, linked to very pressing economic and competitive contexts, application portability and deployment process reusability has become a major issue. The model driven engineering is an approach that aspires to meet these needs by separating functional concerns of multitasking systems from their technical concerns, while maintaining the relationship between them. In practice, this takes the form of model transformations that specializes models for target platforms. Currently, concerns specific to these platforms are described implicitly in the transformations themselves. Consequently, these transformations are not reusable and do not meet the heterogeneous evolutionary needs that characterize multitasking systems. Our objective is then to apply the principle of separation of concern even at the level of transformation models, an approach that guarantees portability and reusability of models transformation process.To do this, this study provides first a detailed behavioral modeling of software execution platform. This modeling allows to extract specific concerns from model transformation and to capture them in a detailed platform model independent and reusable. In a second step, based on these models, it presents a generic process for developing concurrent systems. The originality of this approach is a true separation of concerns between three actors: the developer of transformation tool, who specifies a generic model transformation, platform providers that provide detailed models of their platforms and the multitasked system designer that models the system. At the end of this study, an evaluation of this approach shows a reduction in the cost of deploying applications on multiple platforms without incurring an additional cost of performance.Face à la complexité des logiciels multitâches, liée aux contextes économique et concurrentiel très pressants, la portabilité des applications et la réutilisabilité des processus de déploiement sont devenues un enjeu majeur. L'ingénierie dirigée par les modèles est une approche qui aspire répondre à ces besoins en séparant les préoccupations fonctionnelles des systèmes multitâches de leurs préoccupations techniques, tout en maintenant la relation entre eux. En pratique, cela se concrétise par des transformations de modèles capables de spécialiser les modèles pour des plates-formes cibles. Actuellement, les préoccupations spécifiques à ces plates-formes sont décrites implicitement dans les transformations eux même. Par conséquence, ces transformations ne sont pas réutilisables et ne permettent pas de répondre aux besoins hétérogènes et évolutifs qui caractérisent les systèmes multitâches. Notre objectif est alors d'appliquer le principe de séparation de préoccupation au niveau même de la transformation des modèles, une démarche qui garantie la portabilité des modèles et la réutilisabilité des processus de transformation.Pour cela, cette étude propose premièrement une modélisation comportementale détaillée des plates-formes d'exécutions logicielles. Cette modélisation permet d'extraire les préoccupations spécifiques à une plate-forme de la transformation de modèle et les capturer dans un modèle détaillé indépendant et réutilisable. Dans un second temps, en se basant sur ces modèles, elle présente un processus générique de développement des systèmes concurrents multitâches. L'originalité de cette approche réside dans une véritable séparation des préoccupations entre trois acteurs à savoir le développeur des chaînes de transformation, qui spécifient une transformation de modèle générique, les fournisseurs des plates-formes qui fournissent des modèles détaillés de leurs plates-formes et le concepteur des applications multitâche qui modélise le système. A la fin de cette étude, une évaluation de cette approche permet de montrer une réduction dans le coût de déploiement des applications sur plusieurs plates-formes sans impliquer un surcoût de performance

    Déploiement Multiplateforme d'Applications Multitâche par la Modélisation

    No full text
    Face à la complexité des logiciels multitâches, liée aux contextes économique et concurrentiel très pressants, la portabilité des applications et la réutilisabilité des processus de déploiement sont devenues un enjeu majeur. L'ingénierie dirigée par les modèles est une approche qui aspire répondre à ces besoins en séparant les préoccupations fonctionnelles des systèmes multitâches de leurs préoccupations techniques, tout en maintenant la relation entre eux. En pratique, cela se concrétise par des transformations de modèles capables de spécialiser les modèles pour des plates-formes cibles. Actuellement, les préoccupations spécifiques à ces plates-formes sont décrites implicitement dans les transformations eux même. Par conséquence, ces transformations ne sont pas réutilisables et ne permettent pas de répondre aux besoins hétérogènes et évolutifs qui caractérisent les systèmes multitâches. Notre objectif est alors d'appliquer le principe de séparation de préoccupation au niveau même de la transformation des modèles, une démarche qui garantie la portabilité des modèles et la réutilisabilité des processus de transformation.Pour cela, cette étude propose premièrement une modélisation comportementale détaillée des plates-formes d'exécutions logicielles. Cette modélisation permet d'extraire les préoccupations spécifiques à une plate-forme de la transformation de modèle et les capturer dans un modèle détaillé indépendant et réutilisable. Dans un second temps, en se basant sur ces modèles, elle présente un processus générique de développement des systèmes concurrents multitâches. L'originalité de cette approche réside dans une véritable séparation des préoccupations entre trois acteurs à savoir le développeur des chaînes de transformation, qui spécifient une transformation de modèle générique, les fournisseurs des plates-formes qui fournissent des modèles détaillés de leurs plates-formes et le concepteur des applications multitâche qui modélise le système. A la fin de cette étude, une évaluation de cette approche permet de montrer une réduction dans le coût de déploiement des applications sur plusieurs plates-formes sans impliquer un surcoût de performance.Given the complexity of multitasked software, linked to very pressing economic and competitive contexts, application portability and deployment process reusability has become a major issue. The model driven engineering is an approach that aspires to meet these needs by separating functional concerns of multitasking systems from their technical concerns, while maintaining the relationship between them. In practice, this takes the form of model transformations that specializes models for target platforms. Currently, concerns specific to these platforms are described implicitly in the transformations themselves. Consequently, these transformations are not reusable and do not meet the heterogeneous evolutionary needs that characterize multitasking systems. Our objective is then to apply the principle of separation of concern even at the level of transformation models, an approach that guarantees portability and reusability of models transformation process.To do this, this study provides first a detailed behavioral modeling of software execution platform. This modeling allows to extract specific concerns from model transformation and to capture them in a detailed platform model independent and reusable. In a second step, based on these models, it presents a generic process for developing concurrent systems. The originality of this approach is a true separation of concerns between three actors: the developer of transformation tool, who specifies a generic model transformation, platform providers that provide detailed models of their platforms and the multitasked system designer that models the system. At the end of this study, an evaluation of this approach shows a reduction in the cost of deploying applications on multiple platforms without incurring an additional cost of performance.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF

    Comparison of mutual information and its point similarity implementation for image registration

    Get PDF
    Mutual information (MI) is one of the most popular and widely used similarity measures in image registration. In traditional registration processes, MI is computed in each optimization step to measure the similarity between the reference image and the moving image. The presumption is that whenever MI reaches its highest value, this corresponds to the best match. This paper shows that this presumption is not always valid and this leads to registration error. To overcome this problem, we propose to use point similarity measures (PSM) which in contrast to MI allows constant intensity dependence estimates called point similarity functions (PSF). We compare MI and PSM similarity measures in terms of registration misalignment errors. The result of the comparison confirms that the best alignment is not at the highest value of MI but near to it and it shows that PSM performs better than MI if PSF matches the correct intensity dependence between images. This opens a new direction of research towards the improvement of image registration

    A Model-Driven Engineering Approach for Automating the Portability of User Interfaces in Native Mobile Applications

    No full text
    In the last decade, mobile applications have been on the rise. When developing an app, and because of the wide variety of existing mobile devices and operating systems, developers need to support several target platforms. Designing, and developing a mobile app on several platforms require from the developer to invest a considerable amount of extra time and effort, which delays the introduction of the app to the market. The aim of this paper is to propose a technique that takes the user interface developed for one platform as input and generates its equivalent interface for the other platform. In simple terms, our approach translates an iOS interface into its equivalent Android interface and vice versa. Our approach is based on a model-driven solution that proposes a generic UML profile that builds the link between the different resources in Android and iOS. Using this profile, the framework can map any iOS resource to its correct counterpart in Android, and vice versa. Experiments have shown that our approach is feasible, fast, easy to use by developers, and does not require any interference from their side
    corecore