985 research outputs found

    The P2X7 Receptor and NLRP3 Axis in Non-Alcoholic Fatty Liver Disease: A Brief Review

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide, and its prevalence is reaching epidemic characteristics both in adults and in children. The increase of NAFLD prevalence parallels that of obesity, now representing the major cause of liver inflammation, increasing the risk of cirrhosis and hepatocarcinoma. Furthermore, NAFLD is a risk factor for cardiovascular diseases and type 2 diabetes, two of the major leading causes of morbidity and mortality in western countries. Thus a significant amount of studies have dealt with the evaluation of the possible molecular mechanisms leading to NAFLD and its inflammatory consequences within the liver, the non-alcoholic steatohepatitis, and cirrhosis. The inflammasome is a key player in the inflammation and fibrogenic responses in many different tissues, including the liver. The activation of the NLRP3 inflammasome requires the activation by extracellular adenosine tri-phosphate (ATP) of a specific purinergic receptor named P2X7 located in the target cells, although other pathways have been described. To this regard, extracellular ATP acts as an internal danger signal coming from damaged cells participating in the activation of the inflammatory process, a signaling pathway common to many different tissues. Here, we briefly review the involvement of the P2X7 receptor/inflammasome NLRP3 axis in the pathophysiological events leading to NAFLD and its inflammatory and fibrotic evolutions, reporting the possible therapeutical strategies targeting the P2X7 receptor/NLRP3 inflammasome

    An Extracted Fraction of Pseudomonas Oleovorans Can Inhibit Viral Entry and RNA Replication of Hepatitis C Virus in Cell Culture

    Get PDF
    The emergence and distribution of Hepatitis C virus (HCV) infection is still considered as an unsolved problem. Due to side effects, many synthetic drugs have been avoided and replaced by new biologically derived ones. Aim of this study was to use Pseudomonas oleovorans’ extract as HCV viral replication inhibition agent in cell culture system. Several factors were studied and the optimum growth conditions were selected for maximum production of antiviral substance. Pseudomonas oleovorans’ extract was fractionated using different concentrations of chloroform: methanol on silica gel columns. Analysis of potent fraction by GC/MS showed of tetradecanoic and hexadecanoic acid methyl esters. The selected fraction was tested against HCV in vitro using two different protocols: viral attachment entry inhibition (Pre-incubation) and viral replication inhibition (Post infection). 0.1 µg / ml of the selected antiviral fraction resulted in inhibition of viral replication in Huh 7.5 cells. However, higher concentration of 100 µg / ml did not cause any viral inhibition. The selected bacterial fraction containing tetradecanoic acid and hexadecanoic acid methyl esters could be used as a promising candidate to inhibit viral HCV entry and replication of HCV

    Antioxydant activity, oxidative stability properties of Colza oil, comparison of mechanical agitated and ultrasonic extraction on green tea catechins of Camellia sinensis L.

    Full text link
    peer reviewedUltrasonic extraction “UE” used to optimize the extraction yield of phenolic compounds “PC” from green tea Camellia sinensis L., and compared with mechanical agitated extraction “MAE”. UE was applied at different times (15, 10 and 5min) and temperatures (25, 60 and 95°C) and MAE was performed at these experimental conditions (15 min, 95°C, 400 rpm). Results demonstrate that the maximum yield of epigallocatechin 3-gallate “EGCG” extracted by UE was significantly (P < 0.05) higher than that obteined using MAE (136 mg/g vs 100 mg/g, respectively). The optimum conditions for the polyphenol compounds “PC” recovery are obtained using UE during 15 min at 95°C (~134.66 mg/g). Four catechins from extracted PC were identified using high-performance liquid chromatography equipped with a diode array detector and liquid chromatography mass spectrometry “HPLC-DAD & LC-MS”: epigallocatechin “EGC”, epicatechin “EC”, epigallocatechingallate “EGCG”, and epicatechin-gallate “ECG”. EGCG is the major compound in polyphenol extracts representing 60 %. The antioxidant capacity of the obtained extracts was also studied. Diphényl-2-pycril-hydrazyl “DPPH” scavenging activity is higher for UE than MAE (~ 90 % vs ~85%). Moreover, the PC obtained by UE added to colza oil had a higher oxidative stability, determined by rancimat than those extracted by MAE method (~30.62 h vs ~21.26 h). Results indicate the suitability of UE method for production of PC as potent antioxidant for stabilization of vegetable oils such as colza oil

    Comparación del Neoproterozoico/Paleozoico inferior de Marruecos y del SO de Iberia. Interpretaciones geodinámicas

    Get PDF
    El Neoproterozoico del sudoeste de Iberia (Serie Negra y Formación Malcocinado) es contemporáneo de un magmatismo calcoalcalino (Precámbrico PIII del Anti-Atlas de Marruecos) que sella la Orogenia Cadomiense. El Cámbrico inferior y medio está representado, tanto en Iberia como en Marruecos, por secuencias detríticas y vulcanosedimentarias formadas en un contexto de rifting. Sin embargo, la evolución de estas dos regiones se diferenció a partir del Cámbrico superior: en el sudoeste de Iberia, la actividad extensional continuó durante el Ordovícico, desarrollándose dominios oceánicos; en Marruecos, dominó durante el resto del Paleozoico inferior un régimen de plataforma débilmente extensiona

    An Extracted Fraction of Pseudomonas Oleovorans Can Inhibit Viral Entry and RNA Replication of Hepatitis C Virus in Cell Culture

    Get PDF
    The emergence and distribution of Hepatitis C virus (HCV) infection is still considered as an unsolved problem. Due to side effects, many synthetic drugs have been avoided and replaced by new biologically derived ones. Aim of this study was to use Pseudomonas oleovorans’ extract as HCV viral replication inhibition agent in cell culture system. Several factors were studied and the optimum growth conditions were selected for maximum production of antiviral substance. Pseudomonas oleovorans’ extract was fractionated using different concentrations of chloroform: methanol on silica gel columns. Analysis of potent fraction by GC/MS showed of tetradecanoic and hexadecanoic acid methyl esters. The selected fraction was tested against HCV in vitro using two different protocols: viral attachment entry inhibition (Pre-incubation) and viral replication inhibition (Post infection). 0.1 µg / ml of the selected antiviral fraction resulted in inhibition of viral replication in Huh 7.5 cells. However, higher concentration of 100 µg / ml did not cause any viral inhibition. The selected bacterial fraction containing tetradecanoic acid and hexadecanoic acid methyl esters could be used as a promising candidate to inhibit viral HCV entry and replication of HCV

    Elaboration and characterisation of novel low-cost adsorbents from grass-derived sulphonated lignin

    Get PDF
    AbstractThis study investigated the use of water-soluble sulphonated lignin (SL) extracted from grass, which has not been used before as a precursor of activated carbon (AC). Chemical activation of SL with three dehydrating salts (ZnCl2, KCl, Fe2(SO4)3·xH2O) at various salt concentrations (10%, 20%, 30%w/w), charring temperatures (600,700°C) and charring times (1,2h) has been carried out. The surface characteristics and removal efficiencies of cadmium, copper and zinc ions from aqueous solutions were affected by the activation conditions. The sulphonated lignin-based activated carbons (SLACs) with the highest specific surface area, total pore and micropore volume were produced at the lowest dehydrating salt concentration (10%w/w) and at 700°C and 2-h charring. These optimal sulphonated lignin-based ACs were named SLAC-ZC (optimal grass-derived SLAC activated by zinc chloride); SLAC-PC (optimal grass-derived SLAC activated by potassium chloride) and SLAC-FS (optimal grass-derived SLAC activated by ferric sulphate). The central composite design and surface response methodology of different SLACs characteristics showed that the optimal responses were achieved at the same operating conditions. These SLACs also achieved the highest removal efficiencies of Cd2+, Cu2+ and Zn2+ ions from aqueous solutions. The chemical activation had significantly increased the total porosity, microporosity and surface area of water-soluble SL. The activation mechanism depended on the used dehydrating salt where the porosity developed by the dehydration effect of ZnCl2, and by a series of hydrolysis and redox reactions for the other two salts. The results of this research demonstrated that water-soluble SL has a great potential as a novel precursor for the production of activated carbons

    Seroprevalence of camel brucellosis in Qatar

    Get PDF
    Brucellosis is a significant zoonotic disease and one of the most common neglected diseases worldwide. It can infect a wide range of domestic and wild animal species. Infected animals are usually culled, causing substantial economic losses to animal owners and the country’s economy in general. The disease is endemic among cattle, sheep, and goats in many countries around the Middle East and prevalent in most Gulf Cooperation Council countries, comprising a significant public health risk in the region. This study investigated the seroprevalence of brucellosis among camels in Qatar. Two hundred and forty-eight samples were collected from dromedary camels from 28 farms across the entire country. Each sample was tested for Brucella antibodies with both Rose Bengal and competitive enzyme-linked immunosorbent assay. Only samples that tested positive by both tests were considered seropositive for brucellosis. The overall prevalence was (20.6%, 95% CI, 15.7–26.1). The association between sex and seropositivity was slightly significant (Χ2 = 4.32, P = 0.04), with higher seroprevalence in females. Camels below breeding age (i.e., < 4 years old) showed decreased seropositivity (3.4%, 95% CI, 0.1–17.8), compared to (22.8%, 95% CI, 17.4–29.0) seropositivity in camels ≥ 4 years of age, with a significant association between age groups and seropositivity (P = 0.02). Our results indicate that the seroprevalence of brucellosis in Qatar’s camels is alarming, mandating more efforts to control the disease. The findings of this study will aid in selecting better effective measures to control camel brucellosis in Qatar. Further studies need to be conducted on Brucella infection among camels to determine the predisposing risk factors and the steps that should be followed to control brucellosis.Open Access funding provided by the Qatar National Library. This work was supported by Qatar University grant number QUCG-BRC-20/21–2 and high potential projects program QPH3P-BRC-2021–604 to Nahla O. Eltai
    • …
    corecore