9 research outputs found
Contribution à l'utilisation des modèles physiques en Modelica à des fins de commande de systèmes multi-énergies
The environmental pressure, associated to the development of control possibilities of energy networks, implies a great research effort on the production field side, so as to allow a large renewable energy penetration as well as a limited used of fossil energy production means. In parallel, from the consumption side, an optimization at the utility level can lead to an increase in the global energy efficiency as well as a better temporal dispatch of the energy needs. The energy transition requires therefore more flexibility both on production and consumption sides. This needs has to be supported by new control systems. For these control systems, models are required.Modeling with the Modelica language gives structured physical models which can be advantageous when designing control systems. The thesis main focus is to see if the physical models in Modelica language initially designed for the simulation of multi-energy systems can be reused for control and optimization. The systems will be modeled with the libraries developed at EDF's R&D.This thesis studies the control of multi-energy systems and more particularly of districts composed of buildings, heating network, electrical network and renewable energy sources in order to perform energy management that allows to increase consumption and production, to shift them or to decrease them in order to offer flexibility to the electrical network.La pression environnementale conjuguée à un développement des possibilités de pilotage des réseaux d'énergie a pour conséquence un effort important porté côté moyens de production d'énergie, notamment pour l'intégration des énergies renouvelables et un usage limité des moyens de production fossile. Parallèlement, du côté de la consommation, une optimisation au niveau des usages peut permettre une amélioration de la performance énergétique globale et une meilleure répartition temporelle des besoins en énergie. La gestion de l'énergie doit s'accompagner d'un développement de nouveaux systèmes de régulation. Pour ces systèmes de régulation, des modèles sont nécessaires.La modélisation avec le langage Modelica donne des modèles physiques structurés ce qui peut être avantageux lors de la conception des lois de commande. La problématique principale de la thèse est de voir si les modèles physiques en langage Modelica conçus initialement pour la simulation des systèmes multi-énergies peuvent être réutilisés pour la commande et l'optimisation. Les systèmes seront modélisés avec les bibliothèques développées au sein de la R&D d'EDF.Cette thèse s'intéresse à la commande des systèmes multi-énergies et plus particulièrement aux quartiers constitués de bâtiments, de réseau de chaleur, de réseau électrique et de sources d'énergies renouvelables pour faire de la gestion de l'énergie qui permet d'augmenter la consommation et la production, de les décaler ou de les diminuer pour offrir de la flexibilité au réseau électrique
Contribution to the use of physical models in Modelica to control multi energy systems
La pression environnementale conjuguée à un développement des possibilités de pilotage des réseaux d'énergie a pour conséquence un effort important porté côté moyens de production d'énergie, notamment pour l'intégration des énergies renouvelables et un usage limité des moyens de production fossile. Parallèlement, du côté de la consommation, une optimisation au niveau des usages peut permettre une amélioration de la performance énergétique globale et une meilleure répartition temporelle des besoins en énergie. La gestion de l'énergie doit s'accompagner d'un développement de nouveaux systèmes de régulation. Pour ces systèmes de régulation, des modèles sont nécessaires.La modélisation avec le langage Modelica donne des modèles physiques structurés ce qui peut être avantageux lors de la conception des lois de commande. La problématique principale de la thèse est de voir si les modèles physiques en langage Modelica conçus initialement pour la simulation des systèmes multi-énergies peuvent être réutilisés pour la commande et l'optimisation. Les systèmes seront modélisés avec les bibliothèques développées au sein de la R&D d'EDF.Cette thèse s'intéresse à la commande des systèmes multi-énergies et plus particulièrement aux quartiers constitués de bâtiments, de réseau de chaleur, de réseau électrique et de sources d'énergies renouvelables pour faire de la gestion de l'énergie qui permet d'augmenter la consommation et la production, de les décaler ou de les diminuer pour offrir de la flexibilité au réseau électrique.The environmental pressure, associated to the development of control possibilities of energy networks, implies a great research effort on the production field side, so as to allow a large renewable energy penetration as well as a limited used of fossil energy production means. In parallel, from the consumption side, an optimization at the utility level can lead to an increase in the global energy efficiency as well as a better temporal dispatch of the energy needs. The energy transition requires therefore more flexibility both on production and consumption sides. This needs has to be supported by new control systems. For these control systems, models are required.Modeling with the Modelica language gives structured physical models which can be advantageous when designing control systems. The thesis main focus is to see if the physical models in Modelica language initially designed for the simulation of multi-energy systems can be reused for control and optimization. The systems will be modeled with the libraries developed at EDF's R&D.This thesis studies the control of multi-energy systems and more particularly of districts composed of buildings, heating network, electrical network and renewable energy sources in order to perform energy management that allows to increase consumption and production, to shift them or to decrease them in order to offer flexibility to the electrical network
Contribution à l'utilisation des modèles physiques en Modelica à des fins de commande de systèmes multi-énergies
The environmental pressure, associated to the development of control possibilities of energy networks, implies a great research effort on the production field side, so as to allow a large renewable energy penetration as well as a limited used of fossil energy production means. In parallel, from the consumption side, an optimization at the utility level can lead to an increase in the global energy efficiency as well as a better temporal dispatch of the energy needs. The energy transition requires therefore more flexibility both on production and consumption sides. This needs has to be supported by new control systems. For these control systems, models are required.Modeling with the Modelica language gives structured physical models which can be advantageous when designing control systems. The thesis main focus is to see if the physical models in Modelica language initially designed for the simulation of multi-energy systems can be reused for control and optimization. The systems will be modeled with the libraries developed at EDF's R&D.This thesis studies the control of multi-energy systems and more particularly of districts composed of buildings, heating network, electrical network and renewable energy sources in order to perform energy management that allows to increase consumption and production, to shift them or to decrease them in order to offer flexibility to the electrical network.La pression environnementale conjuguée à un développement des possibilités de pilotage des réseaux d'énergie a pour conséquence un effort important porté côté moyens de production d'énergie, notamment pour l'intégration des énergies renouvelables et un usage limité des moyens de production fossile. Parallèlement, du côté de la consommation, une optimisation au niveau des usages peut permettre une amélioration de la performance énergétique globale et une meilleure répartition temporelle des besoins en énergie. La gestion de l'énergie doit s'accompagner d'un développement de nouveaux systèmes de régulation. Pour ces systèmes de régulation, des modèles sont nécessaires.La modélisation avec le langage Modelica donne des modèles physiques structurés ce qui peut être avantageux lors de la conception des lois de commande. La problématique principale de la thèse est de voir si les modèles physiques en langage Modelica conçus initialement pour la simulation des systèmes multi-énergies peuvent être réutilisés pour la commande et l'optimisation. Les systèmes seront modélisés avec les bibliothèques développées au sein de la R&D d'EDF.Cette thèse s'intéresse à la commande des systèmes multi-énergies et plus particulièrement aux quartiers constitués de bâtiments, de réseau de chaleur, de réseau électrique et de sources d'énergies renouvelables pour faire de la gestion de l'énergie qui permet d'augmenter la consommation et la production, de les décaler ou de les diminuer pour offrir de la flexibilité au réseau électrique
Contribution à l'utilisation des modèles physiques en Modelica à des fins de commande de systèmes multi-énergies
The environmental pressure, associated to the development of control possibilities of energy networks, implies a great research effort on the production field side, so as to allow a large renewable energy penetration as well as a limited used of fossil energy production means. In parallel, from the consumption side, an optimization at the utility level can lead to an increase in the global energy efficiency as well as a better temporal dispatch of the energy needs. The energy transition requires therefore more flexibility both on production and consumption sides. This needs has to be supported by new control systems. For these control systems, models are required.Modeling with the Modelica language gives structured physical models which can be advantageous when designing control systems. The thesis main focus is to see if the physical models in Modelica language initially designed for the simulation of multi-energy systems can be reused for control and optimization. The systems will be modeled with the libraries developed at EDF's R&D.This thesis studies the control of multi-energy systems and more particularly of districts composed of buildings, heating network, electrical network and renewable energy sources in order to perform energy management that allows to increase consumption and production, to shift them or to decrease them in order to offer flexibility to the electrical network.La pression environnementale conjuguée à un développement des possibilités de pilotage des réseaux d'énergie a pour conséquence un effort important porté côté moyens de production d'énergie, notamment pour l'intégration des énergies renouvelables et un usage limité des moyens de production fossile. Parallèlement, du côté de la consommation, une optimisation au niveau des usages peut permettre une amélioration de la performance énergétique globale et une meilleure répartition temporelle des besoins en énergie. La gestion de l'énergie doit s'accompagner d'un développement de nouveaux systèmes de régulation. Pour ces systèmes de régulation, des modèles sont nécessaires.La modélisation avec le langage Modelica donne des modèles physiques structurés ce qui peut être avantageux lors de la conception des lois de commande. La problématique principale de la thèse est de voir si les modèles physiques en langage Modelica conçus initialement pour la simulation des systèmes multi-énergies peuvent être réutilisés pour la commande et l'optimisation. Les systèmes seront modélisés avec les bibliothèques développées au sein de la R&D d'EDF.Cette thèse s'intéresse à la commande des systèmes multi-énergies et plus particulièrement aux quartiers constitués de bâtiments, de réseau de chaleur, de réseau électrique et de sources d'énergies renouvelables pour faire de la gestion de l'énergie qui permet d'augmenter la consommation et la production, de les décaler ou de les diminuer pour offrir de la flexibilité au réseau électrique
Modeling for control of Multi Energy Systems based on a physical description in Modelica: application to a city district
International audienc
Energy-based Method to Simplify Complex Multi-Energy Modelica Models
International audienceEnergy production and consumption systems increasingly require more flexibility. The design of new control solutions can be a step, among others, towards flexibility. However, these control solutions often rely on the use of complex models, which are difficult to both manipulate and simulate. This paper presents a proof of concept of a method that reduces the complexity of multi-energy models modeled with Modelica language. This complexityreducing method is based on simplifying the model's components that contribute less to the total energy using an energy-based ranking technique. The proposed solution is successfully applied to a complex city district model. A property of the Modelica language further allows redeclaration of low-ranked components without being compelled to fully redesign the model. Criteria verifying the multi-energy reduced model's precision, while respecting physical constraints, are also introduced
Electrical Grid Flexibility via Heat Pump and Thermal Storage Control
International audienceDistrict Heating Networks (DHN) that include heat pumps as a heating source can offer flexibility to electrical grids. These systems are now used as part of smart city development where the electrical consumption of heat pumps can be controlled. They respond to the Demand-Side Management (DSM) programs and change their consumption to satisfy the constraints on the electrical grid while respecting the end-user heating demand. When thermal storage is included in DHN, there is an increase in the flexibility offered and a shift to using less fossil fuel energy. This paper proposes a heat pump and thermal storage system for space and water heating of twelve tertiary buildings. The proposed DHN system is modeled using Dymola, and is controlled via MATLAB to respond to flexibility demands which are given at the electrical grid level by the Distribution System Operator (DSO). A Model Predictive Controller (MPC) regulates the electrical consumption of the heat pump to perform peak shaving or valley filling for the electrical grid, or to minimize the electrical energy consumed over a 24-hour time window. This paper also presents an optimization problem that responds to different programs using only the heat pump and the thermal storage to satisfy end-user demands. Results show that thermal storage is used more often to satisfy the heating demands of the buildings when the control is activated. The system should be notified early enough before the peak shaving demand so it would be possible to turn off the heat pump
Electrical Grid Flexibility via Heat Pump and Thermal Storage Control
International audienceDistrict Heating Networks (DHN) that include heat pumps as a heating source can offer flexibility to electrical grids. These systems are now used as part of smart city development where the electrical consumption of heat pumps can be controlled. They respond to the Demand-Side Management (DSM) programs and change their consumption to satisfy the constraints on the electrical grid while respecting the end-user heating demand. When thermal storage is included in DHN, there is an increase in the flexibility offered and a shift to using less fossil fuel energy. This paper proposes a heat pump and thermal storage system for space and water heating of twelve tertiary buildings. The proposed DHN system is modeled using Dymola, and is controlled via MATLAB to respond to flexibility demands which are given at the electrical grid level by the Distribution System Operator (DSO). A Model Predictive Controller (MPC) regulates the electrical consumption of the heat pump to perform peak shaving or valley filling for the electrical grid, or to minimize the electrical energy consumed over a 24-hour time window. This paper also presents an optimization problem that responds to different programs using only the heat pump and the thermal storage to satisfy end-user demands. Results show that thermal storage is used more often to satisfy the heating demands of the buildings when the control is activated. The system should be notified early enough before the peak shaving demand so it would be possible to turn off the heat pump
Electrical Grid Flexibility via Heat Pump and Thermal Storage Control
International audienceDistrict Heating Networks (DHN) that include heat pumps as a heating source can offer flexibility to electrical grids. These systems are now used as part of smart city development where the electrical consumption of heat pumps can be controlled. They respond to the Demand-Side Management (DSM) programs and change their consumption to satisfy the constraints on the electrical grid while respecting the end-user heating demand. When thermal storage is included in DHN, there is an increase in the flexibility offered and a shift to using less fossil fuel energy. This paper proposes a heat pump and thermal storage system for space and water heating of twelve tertiary buildings. The proposed DHN system is modeled using Dymola, and is controlled via MATLAB to respond to flexibility demands which are given at the electrical grid level by the Distribution System Operator (DSO). A Model Predictive Controller (MPC) regulates the electrical consumption of the heat pump to perform peak shaving or valley filling for the electrical grid, or to minimize the electrical energy consumed over a 24-hour time window. This paper also presents an optimization problem that responds to different programs using only the heat pump and the thermal storage to satisfy end-user demands. Results show that thermal storage is used more often to satisfy the heating demands of the buildings when the control is activated. The system should be notified early enough before the peak shaving demand so it would be possible to turn off the heat pump