31 research outputs found

    Synthesis and characterization of Cu-MFI catalyst for the direct medium temperature range NO decomposition

    Get PDF
    Abstract In this study the physico-chemical and catalytic properties of copper bearing MFI zeolites (Cu-MFI) with different Si/Al and Si/Cu ratios were investigated. Two different methods for incorporation of metal ions into the zeolite framework were used: the ion exchange from the solution of copper acetate and the direct hydrothermal synthesis. Direct synthesis of a zeolite in the presence of copper-phosphate complexes was expected to generate more active copper species necessary for the desired reaction than the conventional ion exchange method. Direct decomposition of NO was used as a model reaction, because this reaction still offers a very attractive approach to NOX removal. The catalytic properties of zeolite samples were studied using techniques, such as XRD, SEM, EPR and nitrogen adsorption/desorption measurements at 77 K. Results of the kinetic investigation revealed that both methods are applicable for the preparation of the catalysts with active sites capable of catalyzing the NO decomposition. It was found out that Cu-MFI zeolites obtained through direct synthesis are promising catalysts for NO decomposition, especially at lower reaction temperatures. The efficiency of the catalysts prepared by both methods is compared and discussed

    Titanium dioxide/silver nanoparticle bilayers prepared in self-assembly processes

    Get PDF
    A new method for the preparation of TiO2/Ag bilayers via colloid self-assembly process using well-characterized titanium dioxide and silver suspensions was developed. The titanium dioxide nanoparticles, forming a supporting layer, were 46 nm in diameter, exhibiting an isoelectric point at pH 6.4. The silver nanoparticles, forming an external layer of the diameter of 50 nm were prepared via a chemical reduction method with the presence inorganic phosphate salts. The electrophoretic mobility measurements revealed that the zeta potential of silver nanoparticles was highly negative for a broad range of pH and ionic strengths. By explaining this information, the optimum condition for the silver nanoparticle immobilization on TiO2 supporting layers were selected. The coverage of the first layer was adjusted by ionic strength of the suspensions and by the deposition time. Afterward, the silver nanoparticle monolayers of controlled coverage were deposited under the diffusion-controlled transport. Their coverage was determined by a direct enumeration of deposited nanoparticles from AFM images and SEM micrographs. The experimental results showed that for extended deposition times, the coverage of silver nanoparticle layers significantly increases with ionic strength. Therefore, it was proven that the formation of bilayers is mainly controlled by electrostatic interactions and that it is feasible to produce uniform TiO2/Ag materials of desired coverage and structure

    Rotifer Diversity in the Acidic Pyrite Mine Pit Lakes in the Sudety Mountains (Poland)

    Get PDF
    The diversity of rotifers was studied in three artificial water bodies (Azure Lake, Yellow Lake, and Purple Lake), which were once pyrite mines. The physicochemical parameters and the zooplankton composition of the water were determined. Azure Lake had a pH of 3.4–6.9, conductivity values of 165–194 µS cm− 1, and low concentrations of sulphate, calcium, magnesium, copper, and iron, while the other lakes had a pH of 2.6–2.9, a conductivity of 1636–3400 µS cm− 1, and high concentrations of sulphate (up to 2863 mg dm− 3), Cu (up to 2650 µg dm− 3), and Fe (up to 178.3 mg dm− 3). The rotifer community in the lakes comprised 27 taxa (15 in Azure Lake, 13 in Purple Lake and 14 in Yellow Lake). We also found two species that are rarely observed in Poland (Aspelta cincinator and Elosa spinifera), and three species commonly found in acidic water (E. worallii, Cephalodella delicata, and C. hoodi). The types of rotifers in Azure Lake differed from those in the other two lakes. The Shannon–Weaver biodiversity index (H′) was the highest in Purple Lake (H′ = 1.255) and lowest in Azure Lake (H′ = 0.455). The effect of some of the physicochemical parameters on rotifer diversity is discussed

    Raman microspectroscopy as a unique method of the investigation of acid proof steel foil oxidation

    Get PDF
    In this paper, the results of the investigation of the morphology and phase composition of the oxide layers formed on the surface of the 1H18N9T acid proof steel foil by confocal Raman micro-spectroscopy with optical microscopy, SEM, XRD and TEM-EDS-SADP are presented. The foil oxidation was performed by thermo-programmed heating up to 823, 1023 or 1113 K and next annealing at the final temperatures in the air flow for 48 h, 4 h and 4 h, respectively. The great advantages of the use of the Raman spectroscopy for the phase determining in the oxide layers on the acid proof steel foil are shown. Moreover the possibility of applying the optical microscopy for investigation of the surface morphology of both the initial steel foil and the oxide layers is pointed out

    Dispersion of single-wall carbon nanotubes with supramolecular Congo red : properties of the complexes and mechanism of the interaction

    Get PDF
    A method of dispersion of single-wall carbon nanotubes (SWNTs) in aqueous media using Congo red (CR) is proposed. Nanotubes covered with CR constitute the high capacity system that provides the possibility of binding and targeted delivery of different drugs, which can intercalate into the supramolecular, ribbon-like CR structure. The study revealed the presence of strong interactions between CR and the surface of SWNTs. The aim of the study was to explain the mechanism of this interaction. The interaction of CR and carbon nanotubes was studied using spectral analysis of the SWNT–CR complex, dynamic light scattering (DLS), differential scanning calorimetry (DSC) and microscopic methods: atomic force microscopy (AFM), transmission (TEM), scanning (SEM) and optical microscopy. The results indicate that the binding of supramolecular CR structures to the surface of the nanotubes is based on the "face to face stacking". CR molecules attached directly to the surface of the nanotubes can bind further, parallel-oriented molecules and form supramolecular and protruding structures. This explains the high CR binding capacity of carbon nanotubes. The presented system – containing SWNTs covered with CR – offers a wide range of biomedical applications

    Synthesis and characterization of Cu-MFI catalyst for the direct medium temperature range NO decomposition

    Get PDF
    Abstract In this study the physico-chemical and catalytic properties of copper bearing MFI zeolites (Cu-MFI) with different Si/Al and Si/Cu ratios were investigated. Two different methods for incorporation of metal ions into the zeolite framework were used: the ion exchange from the solution of copper acetate and the direct hydrothermal synthesis. Direct synthesis of a zeolite in the presence of copper-phosphate complexes was expected to generate more active copper species necessary for the desired reaction than the conventional ion exchange method. Direct decomposition of NO was used as a model reaction, because this reaction still offers a very attractive approach to NOX removal. The catalytic properties of zeolite samples were studied using techniques, such as XRD, SEM, EPR and nitrogen adsorption/desorption measurements at 77 K. Results of the kinetic investigation revealed that both methods are applicable for the preparation of the catalysts with active sites capable of catalyzing the NO decomposition. It was found out that Cu-MFI zeolites obtained through direct synthesis are promising catalysts for NO decomposition, especially at lower reaction temperatures. The efficiency of the catalysts prepared by both methods is compared and discussed
    corecore