879 research outputs found

    High density cluster jet target for storage ring experiments

    Full text link
    The design and performance of a newly developed cluster jet target installation for hadron physics experiments are presented which, for the first time, is able to generate a hydrogen cluster jet beam with a target thickness of above 1015 atoms/cm210^{15}\,\mathrm{atoms/cm}^2 at a distance of two metres behind the cluster jet nozzle. The properties of the cluster beam and of individual clusters themselves are studied at this installation. Special emphasis is placed on measurements of the target beam density as a function of the relevant parameters as well as on the cluster beam profiles. By means of a time-of-flight setup, measurements of the velocity of single clusters and velocity distributions were possible. The complete installation, which meets the requirements of future internal fixed target experiments at storage rings, and the results of the systematic studies on hydrogen cluster jets are presented and discussed.Comment: 10 pages, 18 figure

    Length scales, patterns and origin of azimuthal seismic anisotropy in the upper mantle as mapped by Rayleigh waves

    Get PDF
    We measure the degree of consistency between published models of azimuthal seismic anisotropy from surface waves, focusing on Rayleigh wave phase-velocity models. Some models agree up to wavelengths of ∌2000 km, albeit at small values of linear correlation coefficients. Others are, however, not well correlated at all, also with regard to isotropic structure. This points to differences in the underlying data sets and inversion strategies, particularly the relative ‘damping' of mapped isotropic versus anisotropic anomalies. Yet, there is more agreement between published models than commonly held, encouraging further analysis. Employing a generalized spherical harmonic representation, we analyse power spectra of orientational (2Κ) anisotropic heterogeneity from seismology. We find that the anisotropic component of some models is characterized by stronger short-wavelength power than the associated isotropic structure. This spectral signal is consistent with predictions from new geodynamic models, based on olivine texturing in mantle flow. The flow models are also successful in predicting some of the seismologically mapped patterns. We substantiate earlier findings that flow computations significantly outperform models of fast azimuths based on absolute plate velocities. Moreover, further evidence for the importance of active upwellings and downwellings as inferred from seismic tomography is presented. Deterministic estimates of expected anisotropic structure based on mantle flow computations such as ours can help guide future seismologic inversions, particularly in oceanic plate regions. We propose to consider such a priori information when addressing open questions about the averaging properties and resolution of surface and body wave based estimates of anisotrop

    Comparison of satellite limb-sounding humidity climatologies of the uppermost tropical troposphere

    No full text
    International audienceHumidity climatologies of the tropical uppermost troposphere from satellite limb emission measurements have been compared. Four instruments are considered; UARS-MLS, Odin-SMR, and Aura-MLS operating in the microwave region, and MIPAS in the IR region. A reference for the comparison is obtained by MOZAIC in-situ measurements. The upper tropospheric humidity products were compared on basis of their empirical probability density functions and seasonally averaged horizontal fields at two altitude layers, 12 and 15 km. The probability density functions of the microwave datasets were found to be in very good agreement with each other, and are also consistent with MOZAIC. The average seasonal humidities differ with less than 10%RHi between the instruments, indicating that stated measurement accuracies of 20?30% are conservative estimates. The systematic uncertainty in Odin-SMR data due to cloud correction was also independently estimated to be 10%RHi. MIPAS humidity profiles were found to suffer from cloud contamination, with only 30% of the measurements reaching into the upper troposphere, but under clear-sky conditions there is a good agreement between MIPAS, Odin-SMR and Aura-MLS. Odin-SMR and the two MLS datasets can be treated as independent, being based on different underlying spectroscopy and technology. The good agreement between the microwave limb-sounders, and MOZAIC, is therefore an important step towards understanding the upper tropospheric humidity. The found accuracy of 10%RHi is approaching the level required to validate climate modelling of the upper troposphere humidity. The comparison of microwave and IR also stresses that microwave limb-sounding is necessary for a complete view of the upper troposphere

    Electron localisation function in current-density-functional theory

    Get PDF
    We present a generalisation of the electron localisation function (ELF) to current-density-functional theory as a descriptor for the properties of molecules in the presence of magnetic fields. The resulting current ELF (cELF) is examined for a range of small molecular systems in field strengths up to B0 = 235 kT (one atomic unit). The cELF clearly depicts the compression of the molecular electronic structure in the directions perpendicular to the applied field and exhibits a structure similar to that of the physical current densities. A topological analysis is performed to examine the changes in chemical bonding upon application of a magnetic field

    An optimized chiral nucleon-nucleon interaction at next-to-next-to-leading order

    Get PDF
    We optimize the nucleon-nucleon interaction from chiral effective field theory at next-to-next- to-leading order. The resulting new chiral force NNLOopt yields \chi^2 \approx 1 per degree of freedom for laboratory energies below approximately 125 MeV. In the A = 3, 4 nucleon systems, the contributions of three-nucleon forces are smaller than for previous parametrizations of chiral interactions. We use NNLOopt to study properties of key nuclei and neutron matter, and demonstrate that many aspects of nuclear structure can be understood in terms of this nucleon-nucleon interaction, without explicitly invoking three-nucleon forces.Comment: 6 pages, 4 figure

    Comparison of satellite limb-sounding humidity climatologies of the uppermost tropical troposphere

    Get PDF
    International audienceHumidity climatologies of the tropical uppermost troposphere from satellite limb emission measurements have been compared. Four instruments are considered; UARS-MLS, Odin-SMR, and Aura-MLS operating in the microwave region, and MIPAS in the infrared region. A reference for the comparison is obtained by MOZAIC in-situ measurements. The upper tropospheric humidity products were compared on basis of their empirical probability density functions and seasonally averaged horizontal fields at two altitude layers, 12 and 15 km. The probability density functions of the microwave datasets were found to be in very good agreement with each other, and were also consistent with MOZAIC. The average seasonal humidities differ with less than 10%RHi between the instruments, indicating that stated measurement accuracies of 20?30% are conservative estimates. The systematic uncertainty in Odin-SMR data due to cloud correction was also independently estimated to be 10%RHi. MIPAS humidity profiles were found to suffer from cloud contamination, with only 30% of the measurements reaching into the upper troposphere, but under clear-sky conditions there is a good agreement between MIPAS, Odin-SMR and Aura-MLS. Odin-SMR and the two MLS datasets can be treated as independent, being based on different underlying spectroscopy and technology. The good agreement between the microwave limb-sounders, and MOZAIC, is therefore an important step towards understanding the upper tropospheric humidity. The found accuracy of 10%RHi is approaching the level required to validate climate modelling of the upper troposphere humidity. The comparison of microwave and infrared also stresses that microwave limb-sounding is necessary for a complete view of the upper troposphere

    Non-perturbative calculation of molecular magnetic properties within current-density functional theory

    Get PDF
    We present a novel implementation of Kohn-Sham density-functional theory utilizing London atomic orbitals as basis functions. External magnetic elds are treated non-perturbatively, which enables the study of both magnetic response properties and the effects of strong fields, using either standard density functionals or current-density functionals - the implementation is the first fully self-consistent implementation of the latter for molecules. Pilot applications are presented for the finite-field calculation of molecular magnetizabilities, hypermagnetizabilities and nuclear magnetic resonance shielding constants, focusing on the impact of current-density functionals on the accuracy of the results. Existing current-density functionals based on the gauge-invariant vorticity are tested and found to be sensitive to numerical details of their implementation. Furthermore, when appropriately regularized, the resulting magnetic properties show no improvement over standard density-functional results. An advantage of the present implementation is the ability to apply density-functional theory to molecules in very strong magnetic fields, where the perturbative approach breaks down. Comparison with high accuracy full-conguration-interaction results shows that the inadequacies of current-density approximations are exacerbated with increasing magnetic field strength. Standard density-functionals remain well behaved but fail to deliver high accuracy. The need for improved current-dependent density-functionals, and how they may be tested using the presented implementation, is discussed in light of our findings

    Accurate bulk properties of nuclei from A=2A = 2 to ∞\infty from potentials with Δ\Delta isobars

    Get PDF
    We optimize Δ\Delta-full nuclear interactions from chiral effective field theory. The low-energy constants of the contact potentials are constrained by two-body scattering phase shifts, and by properties of bound-state of A=2A=2 to 44 nucleon systems and nuclear matter. The pion-nucleon couplings are taken from a Roy-Steiner analysis. The resulting interactions yield accurate binding energies and radii for a range of nuclei from A=16A=16 to A=132A=132, and provide accurate equations of state for nuclear matter and realistic symmetry energies. Selected excited states are also in agreement with data.Comment: 7 pages, 6 figure

    Current density functional theory using meta-generalized gradient exchange-correlation functionals

    Get PDF
    We present the self-consistent implementation of current-dependent (hybrid) meta generalized gradient approximation (mGGA) density functionals using London atomic orbitals. A previously proposed generalized kinetic energy density is utilized to implement mGGAs in the framework of Kohn--Sham current density-functional theory (KS-CDFT). A unique feature of the non-perturbative implementation of these functionals is the ability to seamlessly explore a wide range of magnetic fields up to 1 a.u. (∌235000\sim 235000T) in strength. CDFT functionals based on the TPSS and B98 forms are investigated and their performance is assessed by comparison with accurate CCSD(T) data. In the weak field regime magnetic properties such as magnetizabilities and NMR shielding constants show modest but systematic improvements over GGA functionals. However, in strong field regime the mGGA based forms lead to a significantly improved description of the recently proposed perpendicular paramagnetic bonding mechanism, comparing well with CCSD(T) data. In contrast to functionals based on the vorticity these forms are found to be numerically stable and their accuracy at high field suggests the extension of mGGAs to CDFT via the generalized kinetic energy density should provide a useful starting point for further development of CDFT approximations

    Knockout of PARG110 confers resistance to cGMP-induced toxicity in mammalian photoreceptors.

    Get PDF
    Hereditary retinal degeneration (RD) relates to a heterogeneous group of blinding human diseases in which the light sensitive neurons of the retina, the photoreceptors, die. RD is currently untreatable and the underlying cellular mechanisms remain poorly understood. However, the activity of the enzyme poly-ADP-ribose polymerase-1 (PARP1) and excessive generation of poly-ADP-ribose (PAR) polymers in photoreceptor nuclei have been shown to be causally involved in RD. The activity of PARP1 is to a large extent governed by its functional antagonist, poly-ADP-glycohydrolase (PARG), which thus also may have a role in RD. To investigate this, we analyzed PARG expression in the retina of wild-type (wt) mice and in the rd1 mouse model for human RD, and detected increased PARG protein in a subset of degenerating rd1 photoreceptors. Knockout (KO) animals lacking the 110 kDa nuclear PARG isoform were furthermore analyzed, and their retinal morphology and function were indistinguishable from wild-type animals. Organotypic wt retinal explants can be experimentally treated to induce rd1-like photoreceptor death, but PARG110 KO retinal explants were unexpectedly highly resistant to such treatment. The resistance was associated with decreased PAR accumulation and low PARP activity, indicating that PARG110 may positively regulate PARP1, an event that therefore is absent in PARG110 KO tissue. Our study demonstrates a causal involvement of PARG110 in the process of photoreceptor degeneration. Contrasting its anticipated role as a functional antagonist, absence of PARG110 correlated with low PARP activity, suggesting that PARG110 and PARP1 act in a positive feedback loop, which is especially active under pathologic conditions. This in turn highlights both PARG110 and PARP1 as potential targets for neuroprotective treatments for RD
    • 

    corecore