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We present a generalisation of the electron localisation function (ELF) to current-density-
functional theory as a descriptor for the properties of molecules in the presence of magnetic
fields. The resulting current ELF (cELF) is examined for a range of small molecular systems in
field strengths up to B0 = 235 kT (one atomic unit). The cELF clearly depicts the compression
of the molecular electronic structure in the directions perpendicular to the applied field and
exhibits a structure similar to that of the physical current densities. A topological analysis is
performed to examine the changes in chemical bonding upon application of a magnetic field.

Keywords: chemical bonding, electron localisation function, density-functional theory,
current density-functional theory, molecular magnetic properties

1. Introduction

The electron localisation function (ELF), introduced for Hartree–Fock theory by
Becke and Edgecombe [1] and extended to Kohn–Sham density-functional theory
(DFT) via an alternative interpretation due to Savin [2], has enjoyed enormous
success as a tool for understanding and visualising chemical bonding. The ELF
has been widely applied to understand bonding in atoms [3], molecules [4–9], clus-
ters [10–13], and solid-state structures [14, 15]. A topological analysis of ELF in
the spirit of Bader’s atoms-in-molecules approach [16] yields further information
on bonding in a given system [2, 17–20], although some caution should be exercised
in interpretations based on this analysis [21].

Recently, we have studied exchange–correlation functionals in current DFT
(CDFT) for calculations of molecules in the presence of strong uniform magnetic
fields [22–25]. In particular, in Ref. [25], we showed that the current-dependent
generalisation of the Tao–Perdew–Staroverov–Scuseria (TPSS) meta-generalised-
gradient-approximation (meta-GGA) functional [26], denoted cTPSS (see also
Ref. [27] for the use of cTPSS in response theory) provides a reasonable descrip-
tion of molecules in strong magnetic fields. In such fields, a new form of bonding,
perpendicular paramagnetic bonding, has recently been identified [28]. The na-
ture of this bonding interaction was accurately captured and analysed in terms of
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molecular-orbital energies and electron-density differences at the CDFT level in
Ref. [25] using the cTPSS functional.

In Section 2, we propose a generalisation of the ELF for molecules in a mag-
netic field. This generalisation is applied to study chemical bonding in Section 3.1,
whereas a topological analysis is performed in Section 3.2. Finally, in Section 3.3,
the physical current density induced by the field is visualised alongside the gener-
alised ELF, illustrating the striking similarity in the topologies of these quantities.

2. Theory

After reviewing the ELF as introduced in Hartree–Fock theory in Sec. 2.1, we
consider its adaption for Kohn–Sham theory in Sec. 2.2. Finally, we discuss the
generalisation of the ELF to systems in magnetic fields in Sec. 2.3.

2.1. ELF in Hartree–Fock theory

The definition of the ELF by Becke and Edgecombe [1] focused on Hartree–Fock
theory and the same-spin pair density,

P σσ2 (r, r′) = ρσ(r)ρσ(r′)− |ρσ1 (r, r′)|2, ρσ1 (r, r′) =

Nσ∑
i=1

ϕ∗iσ(r′)ϕiσ(r). (1)

Expansion of the spherically averaged same-spin conditional pair density

P σσcond(r, r′) = ρσ(r′)− |ρ
σ
1 (r, r′)|2

ρσ(r)
(2)

to leading order gives

P σσcond(r, s) =
1

3

[
Nσ∑
i=1

|∇ϕiσ(r)|2 − 1

4

|∇ρσ(r)|2

ρσ(r)

]
s2 + · · · = 1

3
Dσ(r)s2 . . . , (3)

where s is the radius of a spherical shell around r. The term in brackets is related
to the Fermi-hole curvature derived by Becke [29] and generalised by to non-zero
current densities by Dobson [30]. Becke and Edgecombe [1] proposed to use this
term as a measure of electron localisation, introducing the relative ELF measure

fELF,σ(r) =
1

1 + [Dσ(r)/D0
σ(r)]2

. (4)

Here Dσ(r) is defined in Eq. (3), while D0
σ(r) is the corresponding quantity for a

homogeneous electron gas

D0
σ(r) = 25/3cFρσ(r)5/3, cF =

3

10
(3π2)2/3. (5)

Defined in this manner, the ELF is a dimensionless quantity between 0 and 1. The
upper limit fELF,σ(r) = 1 corresponds to perfect localisation, whereas fELF,σ(r) =
0.5 indicates behaviour close to that of a uniform gas with the same density.
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2.2. ELF in Kohn–Sham theory

The ELF as proposed for Hartree–Fock theory relies on the definition of the con-
ditional pair-density, P σσcond(r, s), for the interacting system. This quantity is not
accessible in the same manner in Kohn–Sham DFT, since the determinantal wave
function is then used to describe a system of non-interacting electrons rather than
to approximate the physical system. On the other hand, Savin et al. [14] noted
that the leading term in Eq. (3) is accessible in Kohn–Sham theory, being related
in a simple manner to the Pauli kinetic-energy density:

τPauli
σ (r) = τσ(r)− τvW

σ (r) =
1

2
Dσ(r) (6)

where

τσ(r) =
1

2

Nσ∑
i=1

|∇ϕiσ(r)|2, τvW
σ (r) =

1

8

|∇ρσ(r)|2

ρσ(r)
, (7)

The term τσ(r) is the σ-spin contribution to the non-interacting kinetic-energy den-
sity in the everywhere-positive gauge. Integration of this quantity over all space
yields the σ-spin component of the non-interacting kinetic energy Ts used in Kohn–
Sham theory. This form reflects the fact that, although non-interacting, the Kohn–
Sham wave function is a single Slater determinant, preserving the fermionic charac-
teristics of the electrons. The second term in Eq. (6), τvW

σ (r), is the von Weizsäcker
(vW) kinetic-energy density, which can be interpreted as the kinetic-energy density
for a system of bosonic particles with orbitals proportional to

√
ρσ. The difference in

Eq. (6) can then be interpreted as the change in the kinetic-energy density induced
by the Pauli principle. Since the von Weizsäcker kinetic-energy density provides a
lower bound on the non-interacting kinetic energy density,

τσ(r) ≥ τvW
σ (r), (8)

the Pauli kinetic-energy density is everywhere nonnegative.
Given that τPauli

σ (r) contains the same information as does Dσ(r), we may con-
sider whether the ratio Dσ(r)/D0

σ(r) required for fELF,σ(r) may be derived from it.
Savin et al. [14] noted that this can indeed be achieved by using the kinetic-energy
density of a uniform electron gas

τUEG
σ (r) = 22/3cFρ

5/3
σ =

1

2
D0
σ(r), (9)

yielding

Dσ(r)

D0
σ(r)

=
τPauli
σ (r)

τUEG
σ (r)

. (10)

The ELF may then be interpreted as a measure of localisation that reflects changes
arising from the fermionic nature of the electrons and the satisfaction of the Pauli
principle. This observation goes a long way towards rationalising the practical util-
ity of fELF,σ(r) for chemical interpretation, bearing in mind that the Pauli principle
and its consequences govern many aspects of how chemical phenomena may be in-
terpreted. The Pauli principle leads to Fermi-correlation (exchange) effects between
electrons of the same-spin, which are typically an order of magnitude larger than
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those between opposite-spin electrons (dynamical correlation). As a result, the in-
terpretation of same-spin interactions, as in ELF, can serve as a useful qualitative
tool for interpretation.

The ELF formula discussed above involves two separate functions, one for each
spin. Kohout and Savin [3] proposed instead the spin-polarised form

fELF(r) =
1

1 +
(
τPauli
α (r)+τPauli

β (r)

τUEG
α (r)+τUEG

β (r)

)2 . (11)

We consider closed-shell systems, for which the values of fELF(r) from Eqs. (4) and
(11) are identical.

2.3. Extension of ELF to magnetic fields

In a magnetic field, fELF(r) becomes gauge dependent through its dependence on
the kinetic energy density τ , itself a gauge variant quantity (see Refs. [25, 27, 30–34]
for further discussion). This unphysical dependence can be removed by introducing
terms dependent on the paramagnetic current density, such as those that arise in
the discussion of the spherical average of the exchange hole by Dobson [30]. This
can be accomplished either in the expansion of Eq. (3) or by replacing the first
term of Eq. (6) according to

τσ → τ̃σ = τσ −
|jpσ(r)|2

ρσ(r)
(12)

where jpσ(r) is the paramagnetic current density,

jpσ(r) = − i
2

occ∑
i

[ϕ∗iσ∇ϕiσ − ϕiσ∇ϕ∗iσ] . (13)

This generalisation has previously been used to compute time-dependent ELFs [35,
36] and in the generalisation of meta-GGA functionals to calculate response proper-
ties perturbatively [27] and magnetic properties non-perturbatively [25]. The latter
implementation allows for the self-consistent determination of molecular energies
and orbitals in a magnetic field using London atomic orbitals [37–39] (also known
as gauge-including atomic orbitals (GIAOs)). We note that the gauge indepen-
dent kinetic energy density is not unique, and several other forms have been pro-
posed [32, 34]. However, the choice Eq. (12) has the advantage that the kinetic
energy density is independent of the external magnetic field, as well as satisfying
Eq. (8). These issues have previously been examined in the context of meta-GGA
functionals in Ref. [34]. Here, we use the cTPSS functional to perform calcula-
tions at a finite magnetic field, computing the generalised ELF as a function of
field strength. Following the notation cTPSS for the TPSS functional with the
substitution in (12), we use the acronym cELF for the similarly modified ELF.

3. Results

All cELF calculations use the London program [40, 41] with the CDFT imple-
mentation of cTPSS described in Ref. [25] via the XCFun library [42] to determine
the required quantities for ELF at different field strengths. All calculations have

4
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been carried out in an uncontracted Cartesian aug-cc-pCVTZ basis set [43, 44] of
London atomic orbitals [37]. Unless otherwise noted, zero-field TPSS geometries
are used.

3.1. Electron Confinement

For a magnetic field of strength B along the z-axis, the molecular electronic Hamil-
tonian takes the form (in atomic units)

H = H0 +
1

2
BLz +BSz +

1

8
B2
∑
i

(x2
i + y2

i ), (14)

where H0 is the unperturbed electronic Hamiltonian, 1
2BLz is the orbital Zeeman

operator expressed in terms of the orbital angular momentum operator Lz in the
field direction, BSz is the spin Zeeman operator expressed in terms of the spin
angular momentum operator Sz in the field direction, and 1

8B
2
∑

i(x
2
i + y2

i ) is the
diamagnetic operator.

Whereas the Zeeman terms may raise or lower the energy, the diamagnetic term
always raises the energy, becoming dominant in a field stronger than one atomic
unit B0 ≈ 235 kT. From the form of the diamagnetic term, we see that the field
confines the system in the directions perpendicular to the field vector. As a re-
sult, the field exerts a significant influence over the electronic structure and, in
particular, the localisation of the electrons.

3.1.1. Paramagnetic Bonding

We first consider the recently discovered phenomenon of perpendicular paramag-
netic bonding [28]. In Figure 1, we present iso-volumes for He2 in a zero field (blue)
and in a uniform field of strength B0 perpendicular to the internuclear axis (red).
The bond distance of 2.864a0 has been optimised at the cTPSS/u-aug-cc-pCVTZ
level in the same field. In Ref. [28], the paramagnetic bonding in He2 was ratio-
nalised in terms of induced electron rotation. The bonding was further analysed at
the Kohn–Sham level in Ref. [25], in terms of molecular-orbital energies and density
distortions relative to non-bonded atoms in the same field.

The confinement induced by the field, shown in red in Fig 1, is clearly captured
by the cELF. In the field, the iso-surfaces contract around the atoms, becoming
much more compact in the perpendicular directions than in the zero field (blue).
Relaxation to the equilibrium geometry at zero field (not presented) gives similarly
diffuse but near-spherical zero-field ELF iso-surfaces.

3.1.2. Covalent Bonding

To illustrate the utility of the cELF in understanding features of covalent bonding
in magnetic fields, we consider methane, ethane, ethene, and ethyne as prototypical
systems containing single, double, and triple bonds. In Figure 2, the methane results
are shown. In the absence of a field, the blue iso-surfaces are consistent with those
obtained in earlier studies; in the presence of field, the iso-surfaces around the
atoms contract. The structure of the cELF is similar for ethane, see Figure 3. An
additional region of electron localisation is seen at the centre of the C-C bond both
at zero field and at B = 0.4B0. As the field increases, the localisation becomes less
pronounced, eventually splitting into two separate regions.

The zero-field ELF plots for ethene in Figure 4 are consistent with those presented
elsewhere [2], with a characteristic dumb-bell shaped structure at the centre of the
C=C bond. With increasing field strength, the dumb-bell structure splits into two,

5



December 10, 2015 Molecular Physics mag˙ELF

Figure 1. Perpendicular paramagnetic bonding in He2. The iso-volumes depict the regions of fELF ≥ 0.8
at zero field (blue-lighter) and in the presence of a perpendicular magnetic field of strength B0 (red-darker).
The system is considered at the equilibrium geometry of R = 2.864a0 as determined in a perpendicular
field of B = B0

Figure 2. The cELF for methane calculated at the cTPSS/u-aug-cc-pCVTZ level at the corresponding
zero-field geometry. The blue iso-volumes depict the regions of fELF ≥ 0.8 in the absence of a magnetic
field (blue-lighter) and in a field of strength B0 (red-darker). The direction of the field is indicated by the
red arrow.

developing eventually into two new structures with localisation above and below
the C=C bond. Around the hydrogen atoms, the cELF surfaces of ethene contract
in a manner similar to that observed for methane and ethane.

Finally, in Figure 5, we present plots for ethyne. At zero field, the ELF structure is
similar to that reported elsewhere [2], with a characteristic ring structure about the
triple bond. The ring is distorted at 0.1B0, splits into two at 0.5B0, and eventually
becomes reminiscent of that for ethene at 1.0B0, with localisation above and below
the bond.

The features of the cELF observed here can help to rationalise the success of the
cTPSS meta-GGA functional in strong fields relative to conventional GGA func-
tionals and also the local-density approximation (LDA), see Ref. [25]. In the cTPSS
functional, the same modification of Eq. (12) is employed, entering the functional
via α(r) = [τ̃σ(r)−τvW

σ (r)]/τUEG
σ (r) and τvW

σ (r)/τ̃σ(r). Note that α(r) contains the
same information as the cELF, to which it is related as fELF,σ(r) = 1/(1 + α2

σ(r)).
Hence α(r) also characterises the nature of different bonding regions, vanishing in
one-orbital regions. However, it is not restricted to values between 0 and 1. The
ratio τvW

σ (r)/τ̃σ(r) also serves as a useful indicator of one-orbital regions.
Our visualisations suggest that, as the field increases, regions of large fELF(r) and

low α(r) values distort considerably. Since meta-GGAs are designed to minimise
one-electron self-interaction errors in these regions, the good performance of the
cTPSS functional in strong magnetic fields observed in Ref. [25] may reflect an
increased importance of these regions.
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Figure 3. The cELF for ethane calculated at the cTPSS/u-aug-cc-pCVTZ at the corresponding zero-field
geometry. The red iso-volumes depict the regions of fELF ≥ 0.8 for 0.0B0 (upper left), 0.4B0 (upper right),
0.7B0 (lower left), and 1.0B0 (lower right). Field direction is indicated by the red arrow.

3.2. Topological Analysis

The function fELF is a continuous scalar field and can therefore be subjected to a
topological analysis similar to that used for the electron density by Bader [16]. This
approach has been extensively used to highlight features of the ELF related to the
chemical bonding in systems at zero field. In particular, the positions of attractors,
which correspond to maxima of fELF, highlight regions of high localisation and
are known to coincide with traditional chemical notions of bonding [2]. Changes
in the number and arrangement of attractors in a magnetic field can therefore be
indicative of deeper changes in the electronic structure induced by the field.

The attractors for ethane (determined on a uniform grid with spacing 0.05a0)
are shown in Figure 3. At zero field and 0.4B0, a single attractor is present at
the centre of the C-C bond. As the field increases, two attractors appear along
the C-C bond axis, reflecting two separate maxima in the cELF. In Figure 4, the
central dumb-bell shape of ethene encompasses two attractors. With increasing
field strength, new features evolve, with two pairs of attractors appearing above
and below the C=C bond.

In Figure 5, the attractors for ethyne are shown, the high symmetry of this
system leading to a ring attractor about the bond. A magnetic field perpendicular
to the bond axis destroys the linear symmetry, breaking the ring attractor into
two point attractors. At 0.5B0, two further attractors appear above and below the
C≡C bond axis. Finally, at 1.0B0, the cELF resembles that for ethene in the same
field, with attractors above and below the C≡C bond axis.

3.3. Physical Current Densities
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Figure 4. The cELF for ethene calculated at the cTPSS/u-aug-cc-pCVTZ at the corresponding zero-field
geometry. The red iso-volumes depict the regions of fELF ≥ 0.8 for 0.0B0 (upper left), 0.4B0 (upper right),
0.7B0 (lower left), and 1.0B0 (lower right). Field direction is indicated by the red arrow.

The total physical current density j is the physically observable electron current
induced by the magnetic field. It is related to the total paramagnetic current density
that enters τ̃ = τ̃α + τ̃β (Eqs. (11) and (12)) and hence the cELF by

j(r) = jp(r) + ρ(r)A(r), (15)

where the second term is the diamagnetic current, dependent on the magnetic
vector potential related to the physical field B as B = ∇×A.

Visualisation of this quantity can aid with the understanding of the magnetic
field’s influence on a system. Figure 6 shows the physical current vector field su-
perimposed over a cELF contour plot for ethyne at 1.0B0 in the molecular plane
(left) and 1.15a0 above it (right). The current streamlines follow the structure of
the cELF, circulating around the attractors and following contour regions of high
localisation. In this sense, the current plots are complementary to the cELF, high-
lighting localised and bonding regions in a field. However, unlike the cELF, the
current density vanishes in field-free DFT and is only of interest in a magnetic
field.

4. Conclusions

We have presented the current-ELF (cELF), a generalisation of the ELF to sys-
tems in magnetic fields. The cELF constitutes a useful tool for understanding the
nature of changes in chemical bonding upon application of a magnetic field. In
systems bound by the perpendicular paramagnetic bonding mechanism [28], such
as He2, the effects of the field in confining the electronic structure in directions per-
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Figure 5. The cELF for ethyne calculated at the cTPSS/u-aug-cc-pCVTZ at the corresponding zero-field
geometry. The red iso-volumes depict the regions of fELF ≥ 0.8 for 0.0B0 (upper left), 0.1B0 (upper right),
0.5B0 (lower left), and 1.0B0 (lower right). Field direction is indicated by the red arrow.
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Figure 6. The physical current density (red stream lines) and the cELF (blue contours) of ethyne in the
molecular plane (left) and 1.15a0 above it (right) in a perpendicular magnetic field of strength B0.
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pendicular to the field are particularly evident. For covalently bound systems, the
effects are more subtle but the cELF provides a clear representation of field-induced
changes in electronic structure, as illustrated by application to methane, ethane,
ethene and ethyne. We expect cELF to become a useful tool for the interpretation
of changes in chemical bonding and reactivity in magnetic fields.
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