314 research outputs found

    Size-dependent bandgap and particle size distribution of colloidal semiconductor nanocrystals

    Get PDF
    A new analytical expression for the size-dependent bandgap of colloidal semiconductor nanocrystals is proposed within the framework of the finite-depth square-well effective mass approximation in order to provide a quantitative description of the quantum confinement effect. This allows one to convert optical spectroscopic data (photoluminescence spectrum and absorbance edge) into accurate estimates for the particle size distributions of colloidal systems even if the traditional effective mass model is expected to fail, which occurs typically for very small particles belonging to the so-called strong confinement limit. By applying the reported theoretical methodologies to CdTe nanocrystals synthesized through wet chemical routes, size distributions are inferred and compared directly to those obtained from atomic force microscopy and transmission electron microscopy. This analysis can be used as a complementary tool for the characterization of nanocrystal samples of many other systems such as the II-VI and III-V semiconductor materials.Comment: 9 pages, 5 figure

    Superconducting and Normal State Properties of Heavily Hole-Doped Diamond

    Full text link
    We report measurements of the specific heat, Hall effect, upper critical field and resistivity on bulk, B-doped diamond prepared by reacting amorphous B and graphite under high-pressure/high-temperature conditions. These experiments establish unambiguous evidence for bulk superconductivity and provide a consistent set of materials parameters that favor a conventional, weak coupling electron-phonon interpretation of the superconducting mechanism at high hole doping.Comment: 10 pages, 3 figure

    Biexciton recombination rates in self-assembled quantum dots

    Get PDF
    The radiative recombination rates of interacting electron-hole pairs in a quantum dot are strongly affected by quantum correlations among electrons and holes in the dot. Recent measurements of the biexciton recombination rate in single self-assembled quantum dots have found values spanning from two times the single exciton recombination rate to values well below the exciton decay rate. In this paper, a Feynman path-integral formulation is developed to calculate recombination rates including thermal and many-body effects. Using real-space Monte Carlo integration, the path-integral expressions for realistic three-dimensional models of InGaAs/GaAs, CdSe/ZnSe, and InP/InGaP dots are evaluated, including anisotropic effective masses. Depending on size, radiative rates of typical dots lie in the regime between strong and intermediate confinement. The results compare favorably to recent experiments and calculations on related dot systems. Configuration interaction calculations using uncorrelated basis sets are found to be severely limited in calculating decay rates.Comment: 11 pages, 4 figure

    Superconductivity in silicon nanostructures

    Full text link
    We present the findings of the superconductivity observed in the silicon nanostructures prepared by short time diffusion of boron on the n-type Si(100) surface. These Si-based nanostructures represent the p-type ultra-narrow self-assembled silicon quantum wells, 2nm, confined by the delta - barriers heavily doped with boron, 3nm. The EPR and the thermo-emf studies show that the delta - barriers appear to consist of the trigonal dipole centres, which are caused by the negative-U reconstruction of the shallow boron acceptors. Using the CV and thermo-emf techniques, the transport of two-dimensional holes inside SQW is demonstrated to be accompanied by single-hole tunneling through these negative-U centres that results in the superconductivity of the delta - barriers. The values of the correlation gaps obtained from these measurements are in a good agreement with the data derived from the temperature and magnetic field dependencies of the magnetic susceptibility, which reveal a strong diamagnetism and additionally identify the superconductor gap value.Comment: 4 pages, 6 figures, presented at the 4th International Conference on Vortex Matter in Superconductors, Crete, Greece, September 3-9, 200

    ОПЫТ ПРИМЕНЕНИЯ АВАСТИНА В КОМБИНИРОВАННОМ ЛЕЧЕНИИ ПАЦИЕНТА С ДИССЕМИНИРОВАННЫМ РАКОМ ТОЛСТОЙ КИШКИ

    Get PDF
    Treatment of patients with metastatic colorectal cancer (mCRC)  is one of the priority questions in oncology. Despite the significant progress in chemotherapy treatment, development of target agents is the only way of further improvement of the results. Bevacizumab (Avastin) is the first biologic demonstrated it’s efficacy in 1st and 2nd therapy lines in mCRC patients and what’s more important – in continuation with first two serial chemotherapy lines.Author presents his own experience of prolonged bevacizumab (Avastin) therapy in several serial therapy lines in mCRC patient.Лечение больных метастатическим колоректальным раком (мКРР) относится к числу приоритетных вопросов онкологии. Несмотря на значительный прогресс в химиотерапии, дальнейшее улучшение результатов лечения связано с развитием таргетных препаратов. Первым препаратом, продемонстрировавшим свою эффективность в 1-й и 2-й линиях терапии, а также на протяжении последовательных первых двух линий терапии, является бевацизумаб (Авастин).Автор приводит собственный опыт эффективного длительного применения бевацизумаба (Авастина) в нескольких последовательных линиях терапии у больного мКРР

    Search for f1(1285)π+ππ0f_1(1285) \to \pi^+\pi^-\pi^0 decay with VES detector

    Full text link
    The isospin violating decay f1(1285)π+ππ0f_1(1285)\to\pi^+\pi^-\pi^0 has been studied at VES facility. This study is based at the statistics acquired in πBe\pi^- Be interactions at 27, 36.6 and 41 GeV/c in diffractive reaction πN(f1π)N\pi^- N \to (f_1 \pi^-) N. The f1(1285)π+ππ0f_1(1285) \to \pi^+\pi^-\pi^0 decay is observed. The ratio of decay probabilities BR(f1(1285)π+ππ0)BR(f_1(1285) \to \pi^+\pi^-\pi^0) to BR(f1(1285)ηπ+π)BR(ηγγ)BR(f_1(1285) \to \eta \pi^+\pi^-) \cdot BR(\eta \to \gamma\gamma) is 1.4\sim\:1.4%.Comment: 10 pages, 8 figures, presented at XII Conference on Hadron Spectroscop

    Stark Effect of Interactive Electron-hole pairs in Spherical Semiconductor Quantum Dots

    Full text link
    We present a theoretical variational approach, based on the effective mass approximation (EMA), to study the quantum-confinement Stark effects for spherical semiconducting quantum dots in the strong confinement regime of interactive electron-hole pair and limiting weak electric field. The respective roles of the Coulomb potential and the polarization energy are investigated in details. Under reasonable physical assumptions, analytical calculations can be performed. They clearly indicate that the Stark shift is a quadratic function of the electric field amplitude in the regime of study. The resulting numerical values are found to be in good agreement with experimental data over a significant domain of validity
    corecore