217 research outputs found

    Effects of traditional processing techniques on the nutritional and microbiological quality of four edible insect species used for food and feed in east Africa

    Get PDF
    Published online: 4 May 2020Edible insects are increasingly being considered as food and feed ingredients because of their rich nutrient content. Already, edible insect farming has taken-off in Africa, but quality and safety concerns call for simple, actionable hazard control mechanisms. We examined the effects of traditional processing techniques—boiling, toasting, solar-drying, oven-drying, boiling + oven-drying, boiling + solar-drying, toasting + oven-drying, toasting + solar-drying—on the proximate composition and microbiological quality of adult Acheta domesticus and Ruspolia differens, the prepupae of Hermetia illucens and 5th instar larvae of Spodoptera littoralis. Boiling, toasting, and drying decreased the dry matter crude fat by 0.8–51% in the order: toasting > boiling > oven-drying > solar-drying, whereas the protein contents increased by 1.2–22% following the same order. Boiling and toasting decreased aerobic mesophilic bacterial populations, lowered Staphylococcus aureus, and eliminated the yeasts and moulds, Lac+ enteric bacteria, and Salmonella. Oven-drying alone marginally lowered bacterial populations as well as yeast and moulds, whereas solar-drying alone had no effect on these parameters. Oven-drying of the boiled or toasted products increased the aerobic mesophilic bacteria counts but the products remained negative on Lac+ enteric bacteria and Salmonella. Traditional processing improves microbial safety but alters the nutritional value. Species- and treatment-specific patterns exist

    The nutritive value of black soldier fly larvae reared on common organic waste streams in Kenya

    Get PDF
    Open Access JournalIn Africa, livestock production currently accounts for about 30% of the gross value of agricultural production. However, production is struggling to keep up with the demands of expanding human populations, the rise in urbanization and the associated shifts in diet habits. High costs of feed prevent the livestock sector from thriving and to meet the rising demand. Insects have been identified as potential alternatives to the conventionally used protein sources in livestock feed due to their rich nutrients content and the fact that they can be reared on organic side streams. Substrates derived from organic by-products are suitable for industrial large-scale production of insect meal. Thus, a holistic comparison of the nutritive value of Black Soldier Fly larvae (BSFL) reared on three different organic substrates, i.e. chicken manure (CM), brewers’ spent grain (SG) and kitchen waste (KW), was conducted. BSFL samples reared on every substrate were collected for chemical analysis after the feeding process. Five-hundred (500) neonatal BSFL were placed in 23 × 15 cm metallic trays on the respective substrates for a period of 3–4 weeks at 28 ± 2 °C and 65 ± 5% relative humidity. The larvae were harvested when the prepupal stage was reached using a 5 mm mesh size sieve. A sample of 200 grams prepupae was taken from each replicate and pooled for every substrate and then frozen at −20 °C for chemical analysis. Samples of BSFL and substrates were analyzed for dry matter (DM), crude protein (CP), ether extracts (EE), ash, acid detergent fibre (ADF), neutral detergent fibre (NDF), amino acids (AA), fatty acids (FA), vitamins, flavonoids, minerals and aflatoxins. The data were then subjected to analysis of variance (ANOVA) using general linear model procedure. BSFL differed in terms of nutrient composition depending on the organic substrates they were reared on. CP, EE, minerals, amino acids, ADF and NDF but not vitamins were affected by the different rearing substrates. BSFL fed on different substrates exhibited different accumulation patterns of minerals, with CM resulting in the largest turnover of minerals. Low concentrations of heavy metals (cadmium and lead) were detected in the BSFL, but no traces of aflatoxins were found. In conclusion, it is possible to take advantage of the readily available organic waste streams in Kenya to produce nutrient-rich BSFL-derived feed

    Global overview of locusts as food, feed and other uses

    Get PDF
    This review assesses the potential of harnessing locust swarms for beneficial uses as a more sustainable management strategy than using pesticides. As well, it highlights the global distribution of locust species; their nutritional value; historical practices of their use as food, feed and other applications; harvesting technologies; and regulatory framework. Locusts have traditionally been consumed by humans or fed to animals for millennia. The nutritional composition is comparable or superior to that of conventional meat. They are potential raw materials for chitin, oil and nutraceutical products. Safety concerns in the beneficial use of locusts are insecticides, allergens and microbial contaminants.Australian Centre for International Agricultural ResearchNorwegian Agency for Development CooperationBioinnovate Africa Programme through SIDARockefeller FoundationUnited Kingdom’s Foreign, Commonwealth & Development OfficeSwedish International Development Cooperation AgencySwiss Agency for Development and CooperationFederal Democratic Republic of EthiopiaGovernment of the Republic of Keny

    Host-plant relationships and natural enemies of the invasive mealybug, Rastrococcus iceryoides Green in Kenya and Tanzania

    Get PDF
    The invasive mango mealybug, Rastrococcus iceryoides Green (Hemiptera: Pseudococcidae) believed to be native to Southern Asia has rapidly invaded Kenya and Tanzania. A survey was carried out from February 2008–July 2009 to study its geographical distribution, host plant relationships and associated parasitoids in both countries. Our results infer that R. iceryoides is widely distributed across the coastal belts of both countries. Rastrococcus iceryoides was recorded from 29 cultivated and wild host plants from 16 families. Twenty-one of these host plants are new records. Among the cultivated host plants, M. indica (8153.6±19.2/20 twigs and 6054.3±29.2/80 leaves in Kibaha, and 2979.3±33.8/5 fruits in Kinondoni) and Cajanus cajan (L.) Millspaugh (1452.2±44.7/80 leaves and 4672.3±54.7/twig in Morogoro) recorded the highest levels of infestation. Parkinsonia aculeata (7892.3±25.1/20 twigs, 11.6±1.25/80 leaves and 42.2±5.1/5 fruits in Kinango), Caesalpinia sepiaria Roxb (266.3±6.3/80 leaves and 3116.1±17.5/20 twigs in Kinondoni) and Deinbollia borbonica Scheff., (215.7±10.3/80 leaves and 2253±22.9/20 twigs in Kibaha) were found to be the most heavily infested wild host plants. Six parasitoid species were recovered and are reported here for the first time to parasitize R. iceryoides. Anagyrus pseudococci Girault was the most dominant species accounting for 21% parasitism on M. indica and 20% parasitism on P. aculeata in Tanzania and Kenya, respectively. Despite this, the ability of the parasitoid to regulate the population of R. iceryoides was inadequate. Therefore, there is a need for foreign exploration and introduction of efficient coevolved natural enemies from its aboriginal home of Southern Asia to minimize its impact on horticulture in Africa.This work was supported by the European Union (SANTE 2007 147–790). The Hlabisa HIV Treatment and Care Programme has received support through the United States Agency for International Development (USAID) and the President’s Emergency Plan (PEPFAR) under the terms of Award No. 674-A-00-08-00001-00.http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1439-04182017-11-30hb2017Zoology and Entomolog

    Ecological niche and potential geographic distribution of the invasive fruit fly *Bactrocera invadens* (Diptera, Tephritidae)

    Get PDF
    Two correlative approaches to the challenge of ecological niche modeling (genetic algorithm, maximum entropy) were used to estimate the potential global distribution of the invasive fruit fly, Bactrocera invadens, based on associations between known occurrence records and a set of environmental predictor variables. The two models yielded similar estimates, largely corresponding to Equatorial climate classes with high levels of precipitation. The maximum entropy approach was somewhat more conservative in its evaluation of suitability, depending on thresholds for presence/absence that are selected, largely excluding areas with distinct dry seasons; the genetic algorithm models, in contrast, indicate that climate class as partly suitable. Predictive tests based on independent distributional data indicate that model predictions are quite robust. Field observations in Benin and Tanzania confirm relationships between seasonal occurrences of this species and humidity and temperature

    Endophytic fungi protect tomato and nightshade plants against Tuta absoluta (Lepidoptera : Gelechiidae) through a hidden friendship and cryptic battle

    Get PDF
    Endophytic fungi live within plant tissues without causing any harm to the host, promote its growth, and induce systemic resistance against pests and diseases. To mitigate the challenging concealed feeding behavior of immature stages of Tuta absoluta in both tomato (Solanum lycopersicum) and nightshade (Solanum scabrum) host plants, 15 fungal isolates were assessed for their endophytic and insecticidal properties. Twelve isolates were endophytic to both host plants with varied colonization rates. Host plants endophytically-colonized by Trichoderma asperellum M2RT4, Beauveria bassiana ICIPE 706 and Hypocrea lixii F3ST1 outperformed all the other isolates in reducing significantly the number of eggs laid, mines developed, pupae formed and adults emerged. Furthermore, the survival of exposed adults and F1 progeny was significantly reduced by Trichoderma sp. F2L41 and B. bassiana isolates ICIPE 35(4) and ICIPE 35(15) compared to other isolates. The results indicate that T. asperellum M2RT4, B. bassiana ICIPE 706 and H. lixii F3ST1 have high potential to be developed as endophyticfungal- based biopesticide for the management of T. absoluta.The icipe core funding provided by UK’s Foreign, Commonwealth and Development Office (FCDO); Swedish International Development Cooperation Agency (Sida); the Swiss Agency for Development and Cooperation (SDC); the Federal Democratic Republic of Ethiopia; and the Government of the Republic of Kenya.http://www.nature.com/srepam2021Forestry and Agricultural Biotechnology Institute (FABI)Zoology and Entomolog

    Influence of temperature on selected life-history traits of black soldier fly (Hermetia illucens) reared on two common urban organic waste streams in Kenya

    Get PDF
    Open Access JournalIn sub-Saharan Africa, urban populations are projected to increase by 115% in the coming 15 years. In addition, economic growth and dietary shifts towards animal source foods have put high pressure and demand on agricultural production. The high ecological footprint of meat and dairy production, as well as high feed costs, prevent the livestock sector from meeting the increasing demand in a sustainable manner. Insects such as the black soldier fly (BSF) have been identified as potential alternatives to the conventionally used protein sources in livestock feed due to their rich nutrient content and the fact that they can be reared on organic side streams. Substrates derived from organic byproducts are suitable for industrial large-scale production of insect meal. Although efficient in waste management and in feed production, BSF larvae are very sensitive to the external environment such as temperature and rearing medium. Therefore, we studied the effect of temperature and substrate type, i.e., brewers’ spent grain (SG) and cow dung (CD), on the development and survival of BSF larvae. Both organic substrates were readily available in Nairobi, Kenya, the location of the experiments. In our experiment, 100 3–5-day-old BSF larvae were placed into containers that contained either SG or CD and further treated at temperatures of 15 °C, 20 °C, 25 °C, 30 °C, and 35 °C. The duration of larval development was recorded, and the prepupae were removed, weighed, and placed individually in separate, labeled, 35-mL plastic cups filled with moist sawdust. After emergence, 10 2-day-old adults (5 males and 5 females) from every replica per substrate were transferred into a cage (40 × 40 × 40 cm) and allowed to mate for 24 h at their respective temperatures. The laid egg batches were collected and counted, and the adult flies’ longevity was recorded. The data were subjected to a two-way analysis of variance (ANOVA) using the general linear model procedure. BSF larvae reared on SG developed faster than those reared on CD; the former also favored higher temperatures for their larval development and emergence into adults. The optimum range was 25–30 °C. With increasing temperatures, the longevity of adult BSF decreased, while the fecundity of females increased. Thus, it is possible to take advantage of the readily available SG waste streams in the urban environments of Kenya to produce BSF larvae-derived livestock feed within a short duration of time and at relatively high temperatures

    Endophytic colonisation of Solanum lycopersicum and Phaseolus vulgaris by fungal endophytes promotes seedlings growth and hampers the reproductive traits, development, and survival of the greenhouse whitefly, Trialeurodes vaporariorum

    Get PDF
    In the scope of mitigating the negative impacts of pesticide use and managing greenhouse whiteflies, Trialeurodes vaporariorum sustainably, 16 endophytic fungal isolates from five different genera (Beauveria, Trichoderma, Hypocrea, Bionectria, and Fusarium) were screened for their ability to colonise two preferred host plant species, namely, tomato (Solanum lycopersicum L.) and French bean (Phaseolus vulgaris L.), through seed inoculation. Seven and nine isolates were endophytic to P. vulgaris and S. lycopersicum, respectively, where significant differences in the endophytic colonisation rates were observed among the fungal isolates in P. vulgaris and its plant parts, with a significant interaction between the isolates and plant parts in S. lycopersicum. Hypocrea lixii F3ST1, Trichoderma asperellum M2RT4, Trichoderma atroviride F5S21, and T. harzianum KF2R41 successfully colonised all the plant parts of both hosts and therefore were selected and further evaluated for their endophytic persistence, effect on plant growth, and pathogenicity to T. vaporariorum adults and F1 progeny. The four endophytes remained in both host plants for the 5-week assessment with varied colonisation rates related to the strong interaction with the time, isolates, and plant parts in both hosts. The effect of the same endophytes on the different host growth parameters varied in P. vulgaris and S. lycopersicum, with T. asperellum M2RT4 not boosting the growth in both host plants while T. atroviride F5S21 resulted in enhanced shoot biomass in S. lycopersicum. T. atroviride F5S21 and T. harzianum KF2R41 inoculated S. lycopersicum plants and H. lixii F3ST1, T. asperellum M2RT4, and T. harzianum KF2R41 inoculated P. vulgaris plants had significantly lower oviposition, while nymph development in both hosts was significantly prolonged in all the endophytically– colonised plants. The endophytes H. lixii F3ST1 and T. asperellum M2RT4 significantly reduced the longevity/survival of the exposed T. vaporariorum adults and the progeny in both S. lycopersicum and P. vulgaris. The findings demonstrate the attributes of the various endophytes in host plant growth promotion as well as their effects on the lifehistory parameters of T. vaporariorum and could consequently be developed as potential endophytic fungal-based biopesticides for the sustainable management of the pest in S. lycopersicum and P. vulgaris cropping systems.This research was funded by the BioInnovate Africa Phase I project “Promoting smallholder access to fungal biopesticides through Public-Private Partnerships in East Africa” (BA/CI/2017- 02/PROSAFE), and the Foreign, Commonwealth, and Development Office of United Kingdom (FCDO) (FCDO Biopesticide Project, B2291A- FCDO -BIOPESTICIDE) through the International Centre of Insect Physiology and Ecology (icipe). We thank the German Academic Exchange Service (DAAD) In-Region Post-graduate Scholarship for the financial assistance provided to VP through African Regional Postgraduate Programme in Insect Science (ARPPIS). We gratefully acknowledge the icipe core funding provided by the Foreign, Commonwealth, and Development Office of United Kingdom (FCDO); Swedish International Development Cooperation Agency (Sida); the Swiss Agency for Development and Cooperation (SDC); the Federal Democratic Republic of Ethiopia; and the Government of the Republic of Kenya.http://www.frontiersin.org/Plant_Scienceam2022Forestry and Agricultural Biotechnology Institute (FABI)Zoology and Entomolog

    A molecular survey of bacterial species in the guts of black soldier fly larvae (Hermetia illucens) reared on two urban organic waste streams in Kenya

    Get PDF
    Open Access Journal; Published online: 22 Sep 2021Globally, the expansion of livestock and fisheries production is severely constrained due to the increasing costs and ecological footprint of feed constituents. The utilization of black soldier fly (BSF) as an alternative protein ingredient to fishmeal and soybean in animal feed has been widely documented. The black soldier fly larvae (BSFL) used are known to voraciously feed and grow in contaminated organic wastes. Thus, several concerns about their safety for inclusion into animal feed remain largely unaddressed. This study evaluated both culture-dependent sequence-based and 16S rDNA amplification analysis to isolate and identify bacterial species associated with BSFL fed on chicken manure (CM) and kitchen waste (KW). The bacteria species from the CM and KW were also isolated and investigated. Results from the culture-dependent isolation strategies revealed that Providencia sp. was the most dominant bacterial species detected from the guts of BSFL reared on CM and KW. Morganella sp. and Brevibacterium sp. were detected in CM, while Staphylococcus sp. and Bordetella sp. were specific to KW. However, metagenomic studies showed that Providencia and Bordetella were the dominant genera observed in BSFL gut and processed waste substrates. Pseudomonas and Comamonas were recorded in the raw waste substrates. The diversity of bacterial genera recorded from the fresh rearing substrates was significantly higher compared to the diversity observed in the gut of the BSFL and BSF frass (leftovers of the rearing substrates). These findings demonstrate that the presence and abundance of microbiota in BSFL and their associated waste vary considerably. However, the presence of clinically pathogenic strains of bacteria in the gut of BSFL fed both substrates highlight the biosafety risk of potential vertical transmission that might occur, if appropriate pre-and-postharvest measures are not enforced
    corecore