634 research outputs found
Discontinuous symplectic capacities
We show that the spherical capacity is discontinuous on a smooth family of
ellipsoidal shells. Moreover, we prove that the shell capacity is discontinuous
on a family of open sets with smooth connected boundaries.Comment: We include generalizations to higher dimensions due to the unknown
referee and Janko Latschev. We add examples of open sets with connected
boundary on which the shell capacity is not continuous. 3rd and 4th version:
minor changes, to appear in J. Fixed Point Theory App
New obstructions to symplectic embeddings
In this paper we establish new restrictions on symplectic embeddings of
certain convex domains into symplectic vector spaces. These restrictions are
stronger than those implied by the Ekeland-Hofer capacities. By refining an
embedding technique due to Guth, we also show that they are sharp.Comment: 80 pages, 3 figures, v2: improved exposition and minor corrections,
v3: Final version, expanded and improved exposition and minor corrections.
The final publication is available at link.springer.co
A forward-backward splitting algorithm for the minimization of non-smooth convex functionals in Banach space
We consider the task of computing an approximate minimizer of the sum of a
smooth and non-smooth convex functional, respectively, in Banach space.
Motivated by the classical forward-backward splitting method for the
subgradients in Hilbert space, we propose a generalization which involves the
iterative solution of simpler subproblems. Descent and convergence properties
of this new algorithm are studied. Furthermore, the results are applied to the
minimization of Tikhonov-functionals associated with linear inverse problems
and semi-norm penalization in Banach spaces. With the help of
Bregman-Taylor-distance estimates, rates of convergence for the
forward-backward splitting procedure are obtained. Examples which demonstrate
the applicability are given, in particular, a generalization of the iterative
soft-thresholding method by Daubechies, Defrise and De Mol to Banach spaces as
well as total-variation based image restoration in higher dimensions are
presented
Solving Support Vector Machines in Reproducing Kernel Banach Spaces with Positive Definite Functions
In this paper we solve support vector machines in reproducing kernel Banach
spaces with reproducing kernels defined on nonsymmetric domains instead of the
traditional methods in reproducing kernel Hilbert spaces. Using the
orthogonality of semi-inner-products, we can obtain the explicit
representations of the dual (normalized-duality-mapping) elements of support
vector machine solutions. In addition, we can introduce the reproduction
property in a generalized native space by Fourier transform techniques such
that it becomes a reproducing kernel Banach space, which can be even embedded
into Sobolev spaces, and its reproducing kernel is set up by the related
positive definite function. The representations of the optimal solutions of
support vector machines (regularized empirical risks) in these reproducing
kernel Banach spaces are formulated explicitly in terms of positive definite
functions, and their finite numbers of coefficients can be computed by fixed
point iteration. We also give some typical examples of reproducing kernel
Banach spaces induced by Mat\'ern functions (Sobolev splines) so that their
support vector machine solutions are well computable as the classical
algorithms. Moreover, each of their reproducing bases includes information from
multiple training data points. The concept of reproducing kernel Banach spaces
offers us a new numerical tool for solving support vector machines.Comment: 26 page
Плазмохимический синтез оксидных композиций из отходов после подготовки воды из подземных источников
The effect of playground and nature-based interventions on physical activity and self-esteem in UK school children
School playtime provides opportunities for children to engage in physical activity (PA). Playground playtime interventions designed to increase PA have produced differing results. However, nature can also promote PA, through the provision of large open spaces for activity. The purpose of this study is to determine which playtime interventions are most effective at increasing moderate-to-vigorous physical activity (MVPA) and if this varies by school location. Fifty-two children from an urban and rural school participated in a playground sports (PS) and nature-based orienteering intervention during playtime for one week. MVPA was assessed the day before and on the final day of the interventions using accelerometers. Intervention type (p 0.05). The provision of PS influences PA the most; however, a variety of interventions are required to engage less fit children in PA
Analysis of optimal control problems of semilinear elliptic equations by BV-functions
Optimal control problems for semilinear elliptic equations with control costs in the space of bounded variations are analysed. BV-based optimal controls favor piecewise constant, and hence ’simple’ controls, with few jumps. Existence of optimal controls, necessary and sufficient optimality conditions of first and second order are analysed. Special attention is paid on the effect of the choice of the vector norm in the definition of the BV-seminorm for the optimal primal and adjoined variables.The first author was partially supported by Spanish Ministerio de Economía, Industria y Competitividad under research projects MTM2014-57531-P and MTM2017-83185-P. The second was partially supported by the ERC advanced grant 668998 (OCLOC) under the EUs H2020 research program
Preservation of Piecewise Constancy under TV Regularization with Rectilinear Anisotropy
A recent result by Lasica, Moll and Mucha about the -anisotropic
Rudin-Osher-Fatemi model in asserts that the solution is
piecewise constant on a rectilinear grid, if the datum is. By means of a new
proof we extend this result to . The core of our proof consists
in showing that averaging operators associated to certain rectilinear grids map
subgradients of the -anisotropic total variation seminorm to
subgradients
A Repeated Measures Experiment of Green Exercise to Improve Self-Esteem in UK School Children
Exercising in natural, green environments creates greater improvements in adult's self-esteem than exercise undertaken in urban or indoor settings. No comparable data are available for children. The aim of this study was to determine whether so called 'green exercise' affected changes in self-esteem; enjoyment and perceived exertion in children differently to urban exercise. We assessed cardiorespiratory fitness (20 m shuttle-run) and self-reported physical activity (PAQ-A) in 11 and 12 year olds (n = 75). Each pupil completed two 1.5 mile timed runs, one in an urban and another in a rural environment. Trials were completed one week apart during scheduled physical education lessons allocated using a repeated measures design. Self-esteem was measured before and after each trial, ratings of perceived exertion (RPE) and enjoyment were assessed after completing each trial. We found a significant main effect (F (1,74), = 12.2, p<0.001), for the increase in self-esteem following exercise but there was no condition by exercise interaction (F (1,74), = 0.13, p = 0.72). There were no significant differences in perceived exertion or enjoyment between conditions. There was a negative correlation (r = -0.26, p = 0.04) between habitual physical activity and RPE during the control condition, which was not evident in the green exercise condition (r = -0.07, p = 0.55). Contrary to previous studies in adults, green exercise did not produce significantly greater increases in self-esteem than the urban exercise condition. Green exercise was enjoyed more equally by children with differing levels of habitual physical activity and has the potential to engage less active children in exercise. © 2013 Reed et al
- …