50 research outputs found

    Phosphorus regulates ectomycorrhizal fungi biomass production in a Norway spruce forest

    Get PDF
    Ectomycorrhizal fungi (EMF) are important components of soil microbial communities, and EMF biomass can potentially increase carbon (C) stocks by accumulating in the soils as necromass and producing recalcitrant structures. EMF growth depends on the C allocated belowground by the host trees, and the nutrient limitation on tree growth is expected to influence this allocation. Therefore, studying EMF production and understanding the factors that regulates it in natural soils are important to understand C cycling in forests.Fungal mycelium collected from ingrowth mesh bags is commonly used to estimate EMF biomass, but these measurements might not reflect the total EMF production since turnover rates of the hyphae are not considered. Here we estimated EMF production and turnover in response to P fertilization (applied as superphosphate) in a Norway spruce forest where nitrogen (N) deposition has resulted in phosphorus (P) limitation of plant production by using a combination of mesh bags with different incubation periods and with Bayesian inferences. To test how localized patches of N and P influence EMF production and turnover we amended some bags with a nitrogen source (methylene urea) or P source (apatite). Additionally, the Bayesian model tested the effect of seasonality (time of mesh-bag harvesting) on EMF production and turnover.We found that turnover of EMF was not affected by P fertilization or mesh-bag amendment. P fertilization had a negative effect on EMF production in all the mesh-bag amendments, suggesting a reduced belowground C allocation to the EMF when P limitation is alleviated. Apatite amendment significantly increased EMF biomass production in comparison with the pure quartz bags in the control plots but not in the P-fertilized plots. This indicates that P-rich patches enhance EMF production in P-limited forests, but not when P is not limiting. Urea amendment had a generally positive effect on EMF production, but this was significantly reduced by P fertilization, suggesting that a decrease in EMF production due to the alleviated P limitation will affect N foraging. Seasonality had a significant effect on EMF production, and the differences registered between the treatments were higher during the warmer months and disappeared at the end of the growing season.Many studies highlight the importance of N for regulating belowground C allocation to EMF in northern coniferous forests, but here we show that the P status of the forest can be equally important for belowground carbon allocation to EMF production in areas with high N deposition

    Ericaceous dwarf shrubs contribute a significant but drought-sensitive fraction of soil respiration in a boreal pine forest

    Get PDF
    Boreal forests often have a dense understorey of ericaceous dwarf shrubs with ecological adaptations that contrast those of the canopy-forming trees. It is therefore important to quantify contributions by understorey shrubs to ecosystem processes and disentangle shrub- and tree-driven responses to climatic factors. We quantified soil respiration driven by the pine canopy and the ericaceous shrub understorey over 3 years, using a factorial pine root exclusion and shrub removal experiment in a mature Pinus sylvestris forest. Soil temperature and moisture-related responses of respiration attributed to autotrophs (shrubs, pine roots) and heterotrophs were compared. Additionally, we assessed effects of interactions between these functional groups on soil nitrogen availability and respiration. Understorey shrubs accounted for 22% +/- 10% of total autotrophic respiration, reflecting the ericaceous proportion of fine root production in the ecosystem. Heterotrophic respiration constituted about half of total soil respiration. Shrub-driven respiration was more susceptible to drought than heterotrophic- and pine-driven respiration. While the respiration attributed to canopy and understorey remained additive, indicating no competitive release, the plant guilds competed for soil N. Synthesis. Ericaceous understorey shrubs accounted for a small, yet significant, share of total growing season soil respiration. Overlooking understorey respiration may lead to erroneous partitioning and modelling of soil respiration mediated by functional guilds with contrasting responses to soil temperature and moisture. A larger contribution by heterotrophs and pine root-associated organisms to soil respiration under drought conditions could have important implications for soil organic matter accumulation and decomposition as the climate changes in boreal forests

    An alpine treeline in a carbon dioxide-rich world: synthesis of a nine-year free-air carbon dioxide enrichment study

    Get PDF
    We evaluated the impacts of elevated CO2 in a treeline ecosystem in the Swiss Alps in a 9-year free-air CO2 enrichment (FACE) study. We present new data and synthesize plant and soil results from the entire experimental period. Light-saturated photosynthesis (A max) of ca. 35-year-old Larix decidua and Pinus uncinata was stimulated by elevated CO2 throughout the experiment. Slight down-regulation of photosynthesis in Pinus was consistent with starch accumulation in needle tissue. Above-ground growth responses differed between tree species, with a 33% mean annual stimulation in Larix but no response in Pinus. Species-specific CO2 responses also occurred for abundant dwarf shrub species in the understorey, where Vaccinium myrtillus showed a sustained shoot growth enhancement (+11%) that was not apparent for Vaccinium gaultherioides or Empetrum hermaphroditum. Below ground, CO2 enrichment did not stimulate fine root or mycorrhizal mycelium growth, but increased CO2 effluxes from the soil (+24%) indicated that enhanced C assimilation was partially offset by greater respiratory losses. The dissolved organic C (DOC) concentration in soil solutions was consistently higher under elevated CO2 (+14%), suggesting accelerated soil organic matter turnover. CO2 enrichment hardly affected the C-N balance in plants and soil, with unaltered soil total or mineral N concentrations and little impact on plant leaf N concentration or the stable N isotope ratio. Sustained differences in plant species growth responses suggest future shifts in species composition with atmospheric change. Consistently increased C fixation, soil respiration and DOC production over 9years of CO2 enrichment provide clear evidence for accelerated C cycling with no apparent consequences on the N cycle in this treeline ecosyste

    Residential vibration exposure from railway traffic in Sweden

    No full text
    Ground borne vibrations generated by train passages cause annoyance and sleep disturbance when the vibration velocity is too high in dwellings close to railway lines. In order to estimate how many people that are exposed to certain vibration velocities from railway traffic in Sweden, data almost 3 000 measurements of vibration have been used and classified according to geology at the receiving building and at the point on the railway line closest to the receiver. For 7 classes of geology the measurement results at the building foundation was used to estimate a simplified mathematical model, and by using 575 measurements of responses from foundation to indoor vibration velocity the weighted indoor levels could be predicted. Based on geological maps and a database of all properties close to railways the total number of exposed individuals in Sweden could be estimated. The results show that approximately 14 000 people are exposed to an rms-weighted maximum vibration velocity of 1.0 mm/s in their home in Sweden, which is about 65 percent higher than previous estimates

    Residential vibration exposure from railway traffic in Sweden

    No full text
    Ground borne vibrations generated by train passages cause annoyance and sleep disturbance when the vibration velocity is too high in dwellings close to railway lines. In order to estimate how many people that are exposed to certain vibration velocities from railway traffic in Sweden, data almost 3 000 measurements of vibration have been used and classified according to geology at the receiving building and at the point on the railway line closest to the receiver. For 7 classes of geology the measurement results at the building foundation was used to estimate a simplified mathematical model, and by using 575 measurements of responses from foundation to indoor vibration velocity the weighted indoor levels could be predicted. Based on geological maps and a database of all properties close to railways the total number of exposed individuals in Sweden could be estimated. The results show that approximately 14 000 people are exposed to an rms-weighted maximum vibration velocity of 1.0 mm/s in their home in Sweden, which is about 65 percent higher than previous estimates

    The influence of soil warming on organic carbon sequestration of arbuscular mycorrhizal fungi in a sub-arctic grassland

    No full text
    A substantial portion of grassland photosynthates is allocated belowground to arbuscular mycorrhizal fungi (AMF), but controversy remains about whether this carbon (C) contributes to soil organic carbon (SOC) under warming. The goal of this study was to investigate how AMF biomass and C sequestered by AMF (CNew) are influenced by soil warming. We estimated the AMF biomass and CNew, assumed to be mostly AMF necromass, in mycelial ingrowth bags buried for 1, 2, or 3 years in soil under warming (~+0.5–16.4 °C). The AMF biomass had a positive, curvilinear response to warming gradients after one year of burial. About 107 g C m−2 of CNew accumulated over the three years and ~12% of this C was from glomalin-related soil protein. Modelling suggested the production rate of AMF biomass was 153 g C m−2 yr−1 with a rapid (36–75 days) turnover while AMF necromass turnover was much slower (1.4 ± 0.2 yr−1). Warming duration (7–9 years vs. > 50 years) did not have significant influence on AMF biomass or CNew (P > 0.05). Our results suggest that AMF are more tolerant to increases in temperature than other microbes or fine roots. The dramatic loss of soil C and stable soil aggregates under warming found earlier at this site were not attributed to a decrease in AMF biomass or CNew. Despite a low AMF standing biomass, its contribution to SOC may be substantial

    Quantification of Biodriven Transfer of Per- and Polyfluoroalkyl Substances from the Aquatic to the Terrestrial Environment via Emergent Insects

    Get PDF
    Emergent aquatic insects are important food subsidies to riparian food webs but can also transfer waterborne contaminants to the terrestrial environment. This study aimed to quantitatively assess this biodriven transfer for per- and polyfluoroalkyl substances (PFAS). Aquatic insect larvae, emergent aquatic insects, terrestrial consumers, sediment, and water were collected from a contaminated lake and stream and an uncontaminated pond, and analyzed for PFAS and stable isotopes of carbon and nitrogen. Top predators in this study were spiders, which showed the highest average Sigma(24)PFAS concentration of 1400 +/- 80 ng g(-1) dry weight (dw) at the lake and 630 ng g(-1) dw at the stream. The transfer of PFAS from the lake to the riparian zone, via deposition of emergent aquatic insects, was 280 ng Sigma 24PFAs m(-2) d(-1) in 2017 and only 23 ng Sigma 24PFAs m(-2) d(-1) in 2018. Because of higher production of emergent aquatic insects, the lake had higher PFAS transfer and higher concentrations in terrestrial consumers compared to the stream, despite the stream having higher PFAS concentration in water and aquatic insect larvae. Our results indicate that biodriven transfer of PFAS from the aquatic systems and subsequent uptake in terrestrial food webs depend more on emergence amounts, i.e., aquatic prey availability, rather than on PFAS concentrations in water and aquatic prey

    Reindeer grazing has contrasting effect on species traits in Vaccinium vitis-idaea L. and Bistorta vivipara (L.) Gray

    Get PDF
    AbstractThat reindeer grazing can have large effects on plant communities is well known, but how reindeer grazing affects plant traits and plant carbon (C) and nitrogen (N) allocation has not been studied to the same extent. This study was conducted in a sub-arctic dry heath in northern Sweden. 17-year-old reindeer exclosures were used to test whether reindeer grazing affects the C:N ratio (a plant quality index), and the δ13C and δ15N (indicators of changes in C and N dynamics) as well as the C and N content of above- and below ground parts of the evergreen dwarf shrub Vaccinium vitis-idaea L. and the perennial forb Bistorta vivipara (L.) Gray. A lower C:N ratio was found in B. vivipara compared to V. vitis-idaea suggesting a higher grazing pressure on that species. We found that grazing reduced the total C content, by 26%, and increased the δ15N, by 1‰, in the leaves of B. vivipara, while no changes were observed in V. vitis-idaea. Fine roots of B. vivipara had higher δ13C (1‰) and δ15N (2.5‰) than the leaves, while such differences were not found in V. vitis-idaea. The results also highlight the importance of analysing both above- and belowground plant parts when interpreting natural variations in δ13C and δ15N
    corecore