34 research outputs found

    Trade-offs between storage and survival affect diapause timing in capital breeders

    Get PDF

    Is Doping of Cognitive Performance an Anti鈥怘erbivore Adaptation? Alkaloids Inhibiting Acetylcholinesterase as a Case

    Get PDF
    Historically, people who study interactions between plants and herbivores focused on the ecological costs and benefits of synthesizing secondary metabolites. These compounds have diverse functions including defenses against herbivores. Some plants produce alkaloids that act as acetylcholinesterase inhibitors, increasing both the level and duration of action of the neurotransmitter acetylcholine with potential toxic effects in insects and mammals. Yet, among a number of neuroactive plant chemicals, alkaloids that inhibit acetylcholinesterase (AIA) display nootropic activities, that is, positively affect cognition, learning, and memory in mammals. This creates a paradox: Neuroactive AIA, expected to punish herbivores, enhance cognition, learning, and memory. A prevailing view is AIA are pesticides that adversely affecting the nervous systems of herbivorous insects, and the positive influences in mammals are merely a by鈥恜roduct of other functions. We review literature on the behavioral ecology of diet choice, food鈥恆version learning, and neurophysiological actions of AIA in mammals to provide a more comprehensive view of the adaptive significance of AIA. These compounds act as anti鈥恏erbivory defenses that influence flavor (taste plus odor) preference/aversion, the formation of memories, and the feeding behavior of mammalian herbivores. Thus, what appears from an insect standpoint to be an enigma makes sense for mammals: AIA enable mammalian herbivores to quickly learn and remember specific plant(s) and the locations where they ate those plant(s). We provide examples of AIA, synthesized by over 200 plant species in 16 families, which affect learning and memory in mammals. Using 36 examples of acetylcholinesterase inhibitors synthesized by plants in 58 families, we also show that acetylcholinesterase blockers contribute to anti鈥恏erbivore chemical defense by affecting food鈥恆version learning and memory in mammalian herbivores. We provide an evolutionary rationale for why natural selection may favor synthesis of chemicals that positively affect mental functions of herbivores. Our hypothesis, which challenges the current view that plant chemical defenses are aimed solely at destabilizing herbivore physiology, facilitates a broader understanding of diet preferences and feeding behavior in mammalian herbivores

    MHC allele frequency distributions under parasite-driven selection: A simulation model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The extreme polymorphism that is observed in major histocompatibility complex (MHC) genes, which code for proteins involved in recognition of non-self oligopeptides, is thought to result from a pressure exerted by parasites because parasite antigens are more likely to be recognized by MHC heterozygotes (heterozygote advantage) and/or by rare MHC alleles (negative frequency-dependent selection). The Ewens-Watterson test (EW) is often used to detect selection acting on MHC genes over the recent history of a population. EW is based on the expectation that allele frequencies under balancing selection should be more even than under neutrality. We used computer simulations to investigate whether this expectation holds for selection exerted by parasites on host MHC genes under conditions of heterozygote advantage and negative frequency-dependent selection acting either simultaneously or separately.</p> <p>Results</p> <p>In agreement with simple models of symmetrical overdominance, we found that heterozygote advantage acting alone in populations does, indeed, result in more even allele frequency distributions than expected under neutrality, and this is easily detectable by EW. However, under negative frequency-dependent selection, or under the joint action of negative frequency-dependent selection and heterozygote advantage, distributions of allele frequencies were less predictable: the majority of distributions were indistinguishable from neutral expectations, while the remaining runs resulted in either more even or more skewed distributions than under neutrality.</p> <p>Conclusions</p> <p>Our results indicate that, as long as negative frequency-dependent selection is an important force maintaining MHC variation, the EW test has limited utility in detecting selection acting on these genes.</p

    Thiamin dynamics during the adult life cycle of Atlantic salmon (Salmo salar)

    Get PDF
    Thiamin is an essential water-soluble B vitamin known for its wide range of metabolic functions and antioxidant properties. Over the past decades, reproductive failures induced by thiamin deficiency have been observed in several salmonid species worldwide, but it is unclear why this micronutrient deficiency arises. Few studies have compared thiamin concentrations in systems of salmonid populations with or without documented thiamin deficiency. Moreover, it is not well known whether and how thiamin concentration changes during the marine feeding phase and the spawning migration. Therefore, samples of Atlantic salmon (Salmo salar) were collected when actively feeding in the open Baltic Sea, after the sea migration to natal rivers, after river migration, and during the spawning period. To compare populations of Baltic salmon with systems without documented thiamin deficiency, a population of landlocked salmon located in Lake V盲nern (Sweden) was sampled as well as salmon from Norwegian rivers draining into the North Atlantic Ocean. Results showed the highest mean thiamin concentrations in Lake V盲nern salmon, followed by North Atlantic, and the lowest in Baltic populations. Therefore, salmon in the Baltic Sea seem to be consistently more constrained by thiamin than those in other systems. Condition factor and body length had little to no effect on thiamin concentrations in all systems, suggesting that there is no relation between the body condition of salmon and thiamin deficiency. In our large spatiotemporal comparison of salmon populations, thiamin concentrations declined toward spawning in all studied systems, suggesting that the reduction in thiamin concentration arises as a natural consequence of starvation rather than to be related to thiamin deficiency in the system. These results suggest that factors affecting accumulation during the marine feeding phase are key for understanding the thiamin deficiency in salmonids. Atlantic salmon, Baltic Sea, M74 syndrome, Salmon life cycle, Thiamin, Thiamin deficiencypublishedVersio

    Food resource uncertainty shapes the fitness consequences of early spring onset in capital and income breeding migratory birds

    No full text
    Due to climate change, the timing of spring arrival and nesting onset in many migratory bird species have advanced. Earlier spring onsets prolong the available breeding period but can also deteriorate local conditions, leading to increased temporal variation in resource availability. This interaction between phenological shifts in nesting onset and short-term temporal variation in food gain has unknown consequences for fitness of migratory bird species. We model two contrasting breeding strategies to investigate the fitness consequences of stochastically fluctuating food gain and storing of energetic reserves for reproduction. The model was inspired by the biology of common eiders (Somateria mollissima), which store extensive reserves prior to egg laying and incubation (capital breeding strategy), and king eiders (S. spectabilis), which continue to forage during nesting (income breeding strategy). For capital breeders, foraging prior to breeding increases energy reserves and clutch size, but for both strategies, postponing nesting reduces the chances of recruitment. We found that in scenarios with early spring onset, the average number of recruits produced by capital breeders was higher under conditions of stochastic rather than deterministic food gain. This is because under highly variable daily food gain, individuals successful in obtaining food can produce large clutches early in the season. However, income breeders do not build up reserve buffers; consequently, their fitness is always reduced, when food availability fluctuates. For both modeled strategies, resource uncertainty had only a minor effect on the timing of nesting onset. Our work shows that the fitness consequences of global changes in breeding season onset depend on the level of uncertainty in food intake and the degree to which reserves are used to fuel the reproductive effort. We predict that among migratory bird species producing one clutch per year, capital breeders are more resilient to climate-induced changes in spring phenology than income breeders.publishedVersio

    Probing of mortality rate by staying alive: The growth-reproduction trade-off in a spatially heterogeneous environment

    No full text
    1. In many annual plants, mollusks, crustaceans and ectothermic vertebrates, growth accompanies reproduction. The growth curves of these organisms often exhibit a complex shape, with episodic cessations or accelerations of growth occurring long after maturation. The mixed allocation to growth and reproduction has poorly understood adaptive consequences, and the life鈥恏istory theory does not explain if complex growth in short鈥恖ived organisms can be adaptive. 2. We model the trade鈥恛ff between growth and reproduction in a short鈥恖ived organism evolving in a metapopulation. Individuals occupy risky or safe sites throughout their lives, but are uncertain regarding the risk of death. Modelled organisms are allowed to grow and produce offspring at specified time points (moults), although we also consider scenarios that approximate continuous growth and reproduction. 3. Certain combinations of risky to safe sites select for strategies with mixed allocation to growth and reproduction that bet鈥恏edge offspring production in safe and risky sites. Our model shows that spatially heterogeneous environments select for mixed allocation only if safe sites do not become the prevailing source of recruits, for example, when risky sites are frequent. In certain conditions, growth curves are multi鈥恜hasic, with allocation to growth that stops, remains constant or accelerates during adult life. The resulting complex growth curves are more likely to evolve in short鈥恖ived organisms that moult several times per adult life. 4. Our work shows that spatial heterogeneity can select for growth that accompanies reproduction and provides insights into the adaptive significance of complex growth curves. Short鈥恖ived crustaceans are particularly predisposed to exhibit complex growth patterns as an adaptive response to spatially heterogeneous environments. Our results suggest that standard statistical growth models assuming adult growth rate to only decelerate over life are not well suited to approximate growth curves of short鈥恖ived crustaceans
    corecore