130 research outputs found

    Effects of Sesame Straw Ash as a Substitute for Cement on Strength Characteristics of Concrete

    Get PDF
    Concrete is broadly used as a building material across the globe, and its use is raising the need of cement in the construction industries. High price of cement and environmental debasement are the driving problems forcing the researchers to come up with alternative materials from large volumes of agricultural wastes as a partial replacement for cement. This study aims at recycling agricultural waste ash (i.e.  Sesame straw ash) as a substitute for cement in the production of sustainable and environmentally friendly greener concrete. Preliminary tests on constituent materials were conducted in order to find out their physical properties. Influences of sesame straw ash (SSA) on cement paste were looked into for addition of 0, 5, 10, 15, 20 and 25 % by weight of cement. The Compressive and flexural strengths as well as the slump of concrete made with different portions of SSA (i.e. 0 – 25 %) were investigated. A 100 mm cubes and 100 mm X 100 mm X 450 mm beams of SSA-concrete were tested for compressive and flexural strengths at 3, 7, 28, 56 and 90 days of curing in line with procedure outlined in BS 1881-116: (1983) and BS 1881-118: (1983) respectively. The outcomes of the workability test show that as the portion of SSA increases the workability a fresh concrete decreases, but consistency, setting times, and soundness of SSA-cement paste increase as the portion of SSA increases. However, the strengths of SSA-concrete increase as the duration of curing increases, and decrease as the portion of SSA increases. It was detected that the strength of concrete produced with 10 % SSA content was beyond the designed strength of 20 N/mm2 at 28 days of curing. In addition, the densities of SSA-concrete samples fall within the limits of 2200 kg/m3 to 2600 kg/m3. Finally, it was concluded that the maximum amount of SSA to be used should not exceed 10 % replacement in concrete production

    Proline Metabolism is Essential for Trypanosoma brucei brucei Survival in the Tsetse Vector

    Get PDF
    Adaptation to different nutritional environments is essential for life cycle completion by all Trypanosoma brucei sub-species. In the tsetse fly vector, L-proline is among the most abundant amino acids and is mainly used by the fly for lactation and to fuel flight muscle. The procyclic (insect) stage of T. b. brucei uses L-proline as its main carbon source, relying on an efficient catabolic pathway to convert it to glutamate, and then to succinate, acetate and alanine as the main secreted end products. Here we investigated the essentiality of an undisrupted proline catabolic pathway in T. b. brucei by studying mitochondrial Δ1-pyrroline-5- carboxylate dehydrogenase (TbP5CDH), which catalyzes the irreversible conversion of gamma-glutamate semialdehyde (γGS) into L-glutamate and NADH. In addition, we provided evidence for the absence of a functional proline biosynthetic pathway. TbP5CDH expression is developmentally regulated in the insect stages of the parasite, but absent in bloodstream forms grown in vitro. RNAi down-regulation of TbP5CDH severely affected the growth of procyclic trypanosomes in vitro in the absence of glucose, and altered the metabolic flux when proline was the sole carbon source. Furthermore, TbP5CDH knocked-down cells exhibited alterations in the mitochondrial inner membrane potential (ΔΨm), respiratory control ratio and ATP production. Also, changes in the proline-glutamate oxidative capacity slightly affected the surface expression of the major surface glycoprotein EP-procyclin. In the tsetse, TbP5CDH knocked-down cells were impaired and thus unable to colonize the fly's midgut, probably due to the lack of glucose between bloodmeals. Altogether, our data show that the regulated expression of the proline metabolism pathway in T. b. brucei allows this parasite to adapt to the nutritional environment of the tsetse midgut

    Prevalence and Direct Economic Losses from Bovine Tuberculosis in Makurdi, Nigeria

    Get PDF
    A retrospective study was conducted to investigate the prevalence of bovine tuberculosis and direct economic losses (DEL) from tuberculosis in cattle slaughtered in Makurdi abattoirs from 2008 to 2012, using abattoir records obtained from the Ministry of Agriculture and Natural Resources. Out of 61654 cattle slaughtered during the study period 1172 (1.90%) were positive for tuberculosis lesions. The annual prevalence of bovine tuberculosis ranges from 0.90% in 2008 to 4.04% in 2012. There was significant (P<0.05) difference in annual prevalence of bovine tuberculosis. It was also observed that there was no seasonal difference in the prevalence of bovine tuberculosis. A total of 1935 affected organs by BTB weighing 3046.50 kg, amounting to 2.91 × 106 Naira (1.82 × 104 USD), were condemned within the study period. Seasonal variation in organ condemnation due to bovine tuberculosis was significantly different (Mann-Whitney U statistics = 774 × 103, P=0.034). It was concluded that bovine tuberculosis is prevalent in Makurdi and accounts for heavy economic losses due to condemnation of edible organs

    The La antigen is over-expressed in lung cancer and is a selective dead cancer cell target for radioimmunotherapy using the la-specific antibody APOMAB(R)

    Get PDF
    Background: The lupus-associated (La)-specific murine monoclonal antibody DAB4 (APOMAB®) specifically binds dead cancer cells. Using DAB4, we examined La expression in human lung cancer samples to assess its suitability as a cancer-selective therapeutic target. We evaluated the safety and effectiveness of radioimmunotherapy (RIT) using DAB4 radiolabeled with Lutetium-177 (177Lu) in the murine Lewis Lung (LL2) carcinoma model, and determined whether combining RIT with DNA-damaging cisplatin-based chemotherapy, a PARP inhibitor (PARPi), or both alters treatment responses. Methods: The expression of La mRNA in human lung cancer samples was analysed using the online database Oncomine, and the protein expression of La was examined using a TissueFocus Cancer Survey Tissue Microarray. The binding of DAB4 to cisplatin-treated LL2 cells was assessed in vitro. LL2 tumour-bearing mice were administered escalating doses of 177Lu-DAB4 alone or in combination with chemotherapy, and tumour growth and survival measured. Biodistribution analysis was used to determine tissue uptake of 177Lu-DAB4 or its isotype control (177Lu-Sal5), when delivered alone or after chemotherapy. PARPi (rucaparib; AG-014699) was combined with chemotherapy and the effects of combined treatment on tumour growth, tumour cell DNA damage and death, and intratumoural DAB4 binding were also analysed. The effect of the triple combination of PARPi, chemotherapy and 177Lu-DAB4 on tumour growth and survival of LL2 tumour-bearing mice was tested. Results: La was over-expressed at both mRNA and protein levels in surgical specimens of human lung cancer and the over-expression of La mRNA conferred a poorer prognosis. DAB4 bound specifically to cisplatin-induced dead LL2 cells in vitro. An anti-tumour dose response was observed when escalating doses of 177Lu-DAB4 were delivered in vivo, with supra-additive responses observed when chemotherapy was combined with 177Lu-DAB4. Combining PARPi with chemotherapy was more effective than chemotherapy alone with increased tumour cell DNA damage and death, and intratumoural DAB4 binding. The combination of PARPi, chemotherapy and 177Lu-DAB4 was well-tolerated and maximised tumour growth delay. Conclusions: The La antigen represents a dead cancer cell-specific target in lung cancer, and DAB4 specifically targeted tumour tissue in vivo, particularly after chemotherapy. Tumour uptake of DAB4 increased further after the combination of PARPi and chemotherapy, which generated new dead tumour cell-binding targets. Consequently, combining 177Lu-DAB4 with PARPi and chemotherapy produced the greatest anti-tumour response. Therefore, the triple combination of PARPi, chemotherapy and RIT may have broad clinical utility.Alexander H Staudacher, Fares Al-Ejeh, Cara K Fraser, Jocelyn M Darby, David M Roder, Andrew Ruszkiewicz, Jim Manavis and Michael P Brow

    Chemotherapy Synergizes with Radioimmunotherapy Targeting La Autoantigen in Tumors

    Get PDF
    To date, inefficient delivery of therapeutic doses of radionuclides to solid tumors limits the clinical utility of radioimmunotherapy. We aim to test the therapeutic utility of Yttrium-90 (90Y)-radio-conjugates of a monoclonal antibody, which we showed previously to bind specifically to the abundant intracellular La ribonucleoprotein revealed in dead tumor cells after DNA-damaging treatment. Methodology/Principal Findings: Immunoconjugates of the DAB4 clone of the La-specific monoclonal antibody, APOMAB®, were prepared using the metal chelator, 1,4,7,10-tetraazacyclododecane-1,4,7,10-​tetraacetic acid (DOTA), and then radiolabeled with 90Y. Mice bearing established subcutaneous tumors were treated with 90Y-DOTA-DAB4 alone or after chemotherapy. Non-radiosensitizing cyclophosphamide/etoposide chemotherapy was used for the syngeneic EL4 lymphoma model. Radiosensitizing cisplatin/gemcitabine chemotherapy was used for the syngeneic Lewis Lung carcinoma (LL2) model, and for the xenograft models of LNCaP prostatic carcinoma and Panc-1 pancreatic carcinoma. We demonstrate the safety, specificity, and efficacy of 90Y-DOTA-DAB4-radioimmunotherapy alone or combined with chemotherapy. EL4 lymphoma-bearing mice either were cured at higher doses of radioimmunotherapy alone or lower doses of radioimmunotherapy in synergy with chemotherapy. Radioimmunotherapy alone was less effective in chemo- and radio-resistant carcinoma models. However, radioimmunotherapy synergized with radiosensitizing chemotherapy to retard significantly tumor regrowth and so prolong the survival of mice bearing LL2, LNCaP, or Panc-1 subcutaneous tumor implants. Conclusions/Significance: We report proof-of-concept data supporting a unique form of radioimmunotherapy, which delivers bystander killing to viable cancer cells after targeting the universal cancer antigen, La, created by DNA-damaging treatment in neighboring dead cancer cells. Subsequently we propose that DAB4-targeted ionizing radiation induces additional cycles of tumor cell death, which further augments DAB4 binding to produce a tumor-lethal ‘genotoxic chain reaction’. Clinically, this approach may be useful as consolidation treatment after a drug-induced cell death among (small-volume) metastatic deposits, the commonest cause of cancer death. This article is part II of a two-part series providing proof-of-concept for the diagnostic and therapeutic use of the DAB4 clone of the La-specific monoclonal antibody, APOMAB®.Fares Al-Ejeh, Jocelyn M. Darby and Michael P. Brow

    Overexpression of miRNA-25-3p inhibits Notch1 signaling and TGF-β-induced collagen expression in hepatic stellate cells

    Get PDF
    During chronic liver injury hepatic stellate cells (HSCs), the principal source of extracellular matrix in the fibrotic liver, transdifferentiate into pro-fibrotic myofibroblast-like cells - a process potentially regulated by microRNAs (miRNAs). Recently, we found serum miRNA-25-3p (miR-25) levels were upregulated in children with Cystic Fibrosis (CF) without liver disease, compared to children with CF-associated liver disease and healthy individuals. Here we examine the role of miR-25 in HSC biology. MiR-25 was detected in the human HSC cell line LX-2 and in primary murine HSCs, and increased with culture-induced activation. Transient overexpression of miR-25 inhibited TGF-β and its type 1 receptor (TGFBR1) mRNA expression, TGF-β-induced Smad2 phosphorylation and subsequent collagen1α1 induction in LX-2 cells. Pull-down experiments with biotinylated miR-25 revealed Notch signaling (co-)activators ADAM-17 and FKBP14 as miR-25 targets in HSCs. NanoString analysis confirmed miR-25 regulation of Notch- and Wnt-signaling pathways. Expression of Notch signaling pathway components and endogenous Notch1 signaling was downregulated in miR-25 overexpressing LX-2 cells, as were components of Wnt signaling such as Wnt5a. We propose that miR-25 acts as a negative feedback anti-fibrotic control during HSC activation by reducing the reactivity of HSCs to TGF-β-induced collagen expression and modulating the cross-talk between Notch, Wnt and TGF-β signaling

    Overexpression of miRNA-25-3p inhibits Notch1 signaling and TGF-β-induced collagen expression in hepatic stellate cells

    Get PDF
    During chronic liver injury hepatic stellate cells (HSCs), the principal source of extracellular matrix in the fibrotic liver, transdifferentiate into pro-fibrotic myofibroblast-like cells - a process potentially regulated by microRNAs (miRNAs). Recently, we found serum miRNA-25-3p (miR-25) levels were upregulated in children with Cystic Fibrosis (CF) without liver disease, compared to children with CF-associated liver disease and healthy individuals. Here we examine the role of miR-25 in HSC biology. MiR-25 was detected in the human HSC cell line LX-2 and in primary murine HSCs, and increased with culture-induced activation. Transient overexpression of miR-25 inhibited TGF-β and its type 1 receptor (TGFBR1) mRNA expression, TGF-β-induced Smad2 phosphorylation and subsequent collagen1α1 induction in LX-2 cells. Pull-down experiments with biotinylated miR-25 revealed Notch signaling (co-)activators ADAM-17 and FKBP14 as miR-25 targets in HSCs. NanoString analysis confirmed miR-25 regulation of Notch- and Wnt-signaling pathways. Expression of Notch signaling pathway components and endogenous Notch1 signaling was downregulated in miR-25 overexpressing LX-2 cells, as were components of Wnt signaling such as Wnt5a. We propose that miR-25 acts as a negative feedback anti-fibrotic control during HSC activation by reducing the reactivity of HSCs to TGF-β-induced collagen expression and modulating the cross-talk between Notch, Wnt and TGF-β signaling

    SerpinB2 regulates stromal remodelling and local invasion in pancreatic cancer

    Get PDF
    Pancreatic cancer has a devastating prognosis, with an overall 5-year survival rate of ~8%, restricted treatment options and characteristic molecular heterogeneity. SerpinB2 expression, particularly in the stromal compartment, is associated with reduced metastasis and prolonged survival in pancreatic ductal adenocarcinoma (PDAC) and our genomic analysis revealed that SERPINB2 is frequently deleted in PDAC. We show that SerpinB2 is required by stromal cells for normal collagen remodelling in vitro, regulating fibroblast interaction and engagement with collagen in the contracting matrix. In a pancreatic cancer allograft model, co-injection of PDAC cancer cells and SerpinB2(-/-) mouse embryonic fibroblasts (MEFs) resulted in increased tumour growth, aberrant remodelling of the extracellular matrix (ECM) and increased local invasion from the primary tumour. These tumours also displayed elevated proteolytic activity of the primary biochemical target of SerpinB2-urokinase plasminogen activator (uPA). In a large cohort of patients with resected PDAC, we show that increasing uPA mRNA expression was significantly associated with poorer survival following pancreatectomy. This study establishes a novel role for SerpinB2 in the stromal compartment in PDAC invasion through regulation of stromal remodelling and highlights the SerpinB2/uPA axis for further investigation as a potential therapeutic target in pancreatic cancer

    Abattoir-based estimates of mycobacterial infections in Cameroon

    Get PDF
    Mycobacteria cause major diseases including human tuberculosis, bovine tuberculosis and Johne’s disease. In livestock, the dominant species is M. bovis causing bovine tuberculosis (bTB), a disease of global zoonotic importance. In this study, we estimated the prevalence of Mycobacteria in slaughter cattle in Cameroon. A total of 2,346 cattle were examined in a cross-sectional study at four abattoirs in Cameroon. Up to three lesions per animal were collected for further study and a retropharyngeal lymph node was collected from a random sample of non-lesioned animals. Samples were cultured on Lowenstein Jensen media and the BACTEC MGIT 960 system, and identified using the Hain® Genotype kits. A total of 207/2,346 cattle were identified with bTB-like lesions, representing 4.0% (45/1,129), 11.3% (106/935), 23.8% (38/160) and 14.8% (18/122) of the cattle in the Bamenda, Ngaoundere, Garoua and Maroua abattoirs respectively. The minimum estimated prevalence of M. bovis was 2.8% (1.9–3.9), 7.7% (6.1–9.6), 21.3% (15.2–28.4) and 13.1% (7.7–20.4) in the four abattoirs respectively. One M. tuberculosis and three M. bovis strains were recovered from non-lesioned animals. The high prevalence of M. bovis is of public health concern and limits the potential control options in this setting without a viable vaccine as an alternative
    • …
    corecore