35 research outputs found

    Modélisation des rayonnements direct et circumsolaire par ciel clair en environnement désertique

    Get PDF
    Routine measurements of the broadband direct normal irradiance (DNI), i.e. beam irradiance at normal incidence, by means of pyrheliometers or equivalent pyranometric systems include the irradiance originating from within the extent of the solar disc (DNIS) and that from a larger circumsolar region, called the circumsolar normal irradiance (CSNI). Such instruments have equivalent aperture half-angles between 2.5° and 5° which are one order of magnitude greater than the angular radius of the solar disc. The equivalent aperture half-angles of the concentrated solar powered systems are greater than the angular radius of the solar disc, but smaller than that of the measuring systems. Therefore, information on the CSNI should be provided for an improved assessment of the DNI. The objective of this PhD thesis is to contribute to an improved assessment of the beam and circumsolar radiation under cloud-free conditions in a desert environment. After selecting the aerosol optical properties of significance, the radiative transfer model libRadtran was used to model the CSNI and DNIS. A fast and simple parametric model which mimics the libRadtran values is proposed. This model uses standard measurements of the DNI and the diffuse horizontal irradiance as inputs to estimate the circumsolar ratio (CSR) for any aperture half-angle between 0.4° and 5°. The CSR is the ratio of the CSNI to the sum of the CSNI and the DNIS. Knowing the CSR and having the measured DNI, the CSNI and the DNIS can be computed.Les mesures de l'éclairement solaire direct reçu au sol en incidence normale (DNI) par des pyrhéliomètres ou instruments équivalents incluent l'éclairement provenant de l'angle solide du disque solaire (DNIS) et celui provenant d'une région angulaire circumsolaire plus large, appelé éclairement circumsolaire (CSNI). Les instruments ont des demi-angles d'ouverture équivalents variant entre 2,5° et 5°, soit un ordre de grandeur plus grand que le demi-angle du disque solaire. Quant aux demi-angles des systèmes de production d'énergie concentrant les rayons solaires, ils sont plus grands que le demi-angle du disque solaire, et plus petits que ceux des instruments. Par consequent, le CSNI doit être connu pour une estimation précise du DNI. Cette thèse contribue à la connaissance et à la modélisation des éclairements direct et circumsolaire en milieu désertique par conditions de ciel clair. Après avoir déterminé les propiétés optiques des aérosols les plus influentes, le modèle numérique de transfert radiatif libRadtran a été utilisé pour modéliser le CSNI et le DNIS. Un modèle paramétrique simplifié et très rapide a été développé qui reproduit les résultats de libRadtran. Il estime le ratio circumsolaire (CSR), soit le rapport entre le CSNI et la somme du CSNI et du DNIS, à partir de mesures standards du DNI et de l'éclairement diffus. A partir du DNI mesuré et de CSR modélisé, le CSNI et le DNIS peuvent être estimés pour tout demi-angle entre 0,4° et 5°. Le modèle a été validé pour deux stations de mesure, dans les Emirats Arabes Unis et en Algérie

    Can AERONET data be used to accurately model the monochromatic beam and circumsolar irradiances under cloud-free conditions in desert environment?

    Get PDF
    International audienceRoutine measurements of the beam irradiance at normal incidence include the irradiance originating from within the extent of the solar disc only (DNI S), whose angular extent is 0.266 • ± 1.7 %, and from a larger circumso-lar region, called the circumsolar normal irradiance (CSNI). This study investigates whether the spectral aerosol optical properties of the AERONET stations are sufficient for an accurate modelling of the monochromatic DNI S and CSNI under cloud-free conditions in a desert environment. The data from an AERONET station in Abu Dhabi, United Arab Emirates, and the collocated Sun and Aureole Measurement instrument which offers reference measurements of the monochromatic profile of solar radiance were exploited. Using the AERONET data both the radiative transfer models libRadtran and SMARTS offer an accurate estimate of the monochromatic DNI S , with a relative root mean square error (RMSE) of 6 % and a coefficient of determination greater than 0.96. The observed relative bias obtained with libRad-tran is +2 %, while that obtained with SMARTS is −1 %. After testing two configurations in SMARTS and three in li-bRadtran for modelling the monochromatic CSNI, libRad-tran exhibits the most accurate results when the AERONET aerosol phase function is presented as a two-term Henyey– Greenstein phase function. In this case libRadtran exhibited a relative RMSE and a bias of respectively 27 and −24 % and a coefficient of determination of 0.882. Therefore, AERONET data may very well be used to model the monochromatic DNI S and the monochromatic CSNI. The results are promising and pave the way towards reporting the contribution of the broadband circumsolar irradiance to standard measurements of the beam irradiance

    Validation of the surface downwelling solar irradiance estimates of the HelioClim-3 database in Egypt

    Get PDF
    International audienceHelioClim-3 (HC3) is a database providing time series of the surface downwelling solar irradiance that are computed from images of the Meteosat satellites. This paper presents the validation results of the hourly global horizontal irradiance (GHI) and direct normal irradiance (DNI), i.e., beam irradiance at normal incidence, of versions four and five of HC3 at seven Egyptian sites. The validation is performed for all-sky conditions, as well as cloud-free conditions. Both versions of HC3 provide similar OPEN ACCESS Remote Sens. 2015, 7 9270 performances whatever the conditions. Another comparison is made with the estimates provided by the McClear database that is restricted to cloud-free conditions. All databases capture well the temporal variability of the GHI in all conditions, McClear being superior for cloud-free cases. In cloud-free conditions for the GHI, the relative root mean square error (RMSE) are fairly similar, ranging from 6% to 15%; both HC3 databases exhibit a smaller bias than McClear. McClear offers an overall better performance for the cloud-free DNI estimates. For all-sky conditions, the relative RMSE for GHI ranges from 10% to 22%, except one station, while, for the DNI, the results are not so good for the two stations with DNI measurements

    DNA Copy Number Changes in <i>Schistosoma</i>-Associated and Non-<i>Schistosoma</i>-Associated Bladder Cancer

    Get PDF
    DNA copy number changes were investigated in 69 samples of schistosoma-associated (SA) and nonschistosoma-associated (NSA) squamous cell carcinoma (SCC) and transitional cell carcinoma (TCC) of the bladder by comparative genomic hybridization (CGH). DNA copy number changes were detected in 47 tumors. SA tumors had more changes than NSA tumors (mean, 7 vs. 4), whereas the number of changes in SCC and TCC tumors was similar. SA tumors displayed more gains than losses (1.7:1), whereas NSA tumors showed an equal number of gains and losses. Changes that were observed at similar frequencies in SCC and TCC, irrespective of the schistosomal status, included gains and high-level amplifications at 1q, 8q, and 20q and losses in 9p and 13q. These changes may be involved in a common pathway for bladder tumor development and progression independent of schistosomal status or histological subtype. Losses in 3p and gains at 5p were seen only in SCC (P < 0.01) and losses in 5q were more frequent in SA-SCC than in other tumors (P < 0.05). However, changes that were more frequent in TCC than those in SCC included gains at 17q (P < 0.01) and losses in 4q (P < 0.05) and 6q (P < 0.01). Gains and high-level amplifications at 5p were seen only in SASCC (P < 0.01), whereas gains and high-level amplifications with minimal common overlapping regions at 11q13 were more frequently seen both in SA-SCC and SA-TCC tumors (P < 0.01). In addition to the above mentioned alterations, several other changes were also seen at lower frequencies. The variations in the DNA copy number changes observed in TCC, SCC, SA, and NSA bladder carcinomas suggest that these tumors have different genetic pathways.Facultad de Ciencias Naturales y Muse

    Modelling the beam and circumsolar radiation under cloud-free conditions in desert environment

    No full text
    Les mesures de l'éclairement solaire direct reçu au sol en incidence normale (DNI) par des pyrhéliomètres ou instruments équivalents incluent l'éclairement provenant de l'angle solide du disque solaire (DNIS) et celui provenant d'une région angulaire circumsolaire plus large, appelé éclairement circumsolaire (CSNI). Les instruments ont des demi-angles d'ouverture équivalents variant entre 2,5° et 5°, soit un ordre de grandeur plus grand que le demi-angle du disque solaire. Quant aux demi-angles des systèmes de production d'énergie concentrant les rayons solaires, ils sont plus grands que le demi-angle du disque solaire, et plus petits que ceux des instruments. Par consequent, le CSNI doit être connu pour une estimation précise du DNI. Cette thèse contribue à la connaissance et à la modélisation des éclairements direct et circumsolaire en milieu désertique par conditions de ciel clair. Après avoir déterminé les propiétés optiques des aérosols les plus influentes, le modèle numérique de transfert radiatif libRadtran a été utilisé pour modéliser le CSNI et le DNIS. Un modèle paramétrique simplifié et très rapide a été développé qui reproduit les résultats de libRadtran. Il estime le ratio circumsolaire (CSR), soit le rapport entre le CSNI et la somme du CSNI et du DNIS, à partir de mesures standards du DNI et de l'éclairement diffus. A partir du DNI mesuré et de CSR modélisé, le CSNI et le DNIS peuvent être estimés pour tout demi-angle entre 0,4° et 5°. Le modèle a été validé pour deux stations de mesure, dans les Emirats Arabes Unis et en Algérie.Routine measurements of the broadband direct normal irradiance (DNI), i.e. beam irradiance at normal incidence, by means of pyrheliometers or equivalent pyranometric systems include the irradiance originating from within the extent of the solar disc (DNIS) and that from a larger circumsolar region, called the circumsolar normal irradiance (CSNI). Such instruments have equivalent aperture half-angles between 2.5° and 5° which are one order of magnitude greater than the angular radius of the solar disc. The equivalent aperture half-angles of the concentrated solar powered systems are greater than the angular radius of the solar disc, but smaller than that of the measuring systems. Therefore, information on the CSNI should be provided for an improved assessment of the DNI. The objective of this PhD thesis is to contribute to an improved assessment of the beam and circumsolar radiation under cloud-free conditions in a desert environment. After selecting the aerosol optical properties of significance, the radiative transfer model libRadtran was used to model the CSNI and DNIS. A fast and simple parametric model which mimics the libRadtran values is proposed. This model uses standard measurements of the DNI and the diffuse horizontal irradiance as inputs to estimate the circumsolar ratio (CSR) for any aperture half-angle between 0.4° and 5°. The CSR is the ratio of the CSNI to the sum of the CSNI and the DNIS. Knowing the CSR and having the measured DNI, the CSNI and the DNIS can be computed

    Toward a near real-time product of air temperature maps from satellite data and in situ measurements in arid environments

    No full text
    International audienceEarth observation data and in situ measurements were used to derive a method for the estimation of Air Temperature (AirT) and thereby produce maps. The methodology was developed and validated using data acquired at five stations located in the United Arab Emirates (UAE) during the year 2012. In the first step, the effect of different variables on the estimation of AirT values was investigated and the variables of high importance were used to build the final model. Land surface temperature (LST), relative humidity, global horizontal irradiance, direct normal irradiance, and diffuse horizontal irradiance were identified as the most important inputs for AirT estimation. Models were developed separately for four different cases based on the seasons (Winter/Summer) and the time of the day (Day/Night). The models were evaluated using jackknife validation on the stations resulting in root mean square errors of 2.25°C (Winter/Day), 2.24°C (Winter/Night), 2.56°C (Summer/Day), and 2.69°C (Summer/Night) and an overall average accuracy of 2.44°C. Finally, the model has been applied on a larger scale by assimilating the relevant Earth observation data and in situ measurements for the creation of AirT maps for the entire country. The resulting AirT maps were generated in near real time at a temporal resolution of 15 min from METEOSAT/SEVIRI LST and the above-mentioned in situ measurements. These maps can be considered as important resources for several applications (e.g., climate studies, solar energy applications, thermal comfort studies, etc.

    GENERATION OF NANOSECOND OPTICAL PULSES WITH CONTROLLED REPETITION RATE USING IN-CAVITY INTENSITY MODULATED BRILLOUIN ERBIUM FIBER LASER

    No full text
    1550 nm band, with in-cavity intensity modulation is demonstrated. The output of the laser is in the form of nanosecond pulses. The longitudinal mode separation is increased, which results in both reducing the number of oscillation modes and, at the same time, changing the output pulses repetition rate to be multiples of the round trip cavity frequency. It is also demonstrated that the number of modes is greatly reduced by the combination of active mode locking and the group velocity dispersion arising from the change in the refractive index at each mode due to the change in its gain within the Brillouin gain bandwidth. A case of a quasi single mode is reached where the output is nearly CW with very low sinusoidal modulation index. 1

    Estimation of the circumsolar ratio in a turbid atmosphere

    Get PDF
    International audienceRoutine measurements of the direct normal irradiance (DNI) are not sufficient for optimal design of concentrating solar technologies. Due to a generally larger aperture angle of pyrheliometers or equivalent pyranometric systems when compared to that of concentrating collectors, the measured irradiance is overestimated as it includes the irradiance from the solar disc and a larger circumsolar region. The angular distribution of the direct and circumsolar radiances, i.e. the sunshape, can have a significant effect on the performance of concentrating collectors. Therefore, optimal design of concentrating solar technologies requires accurate measurements or estimations of the DNI and the sunshape. Published models are available for reproducing the representative sunshape for a given circumsolar ratio (CSR), i.e. the ratio between the circumsolar irradiance and the sum of the circumsolar and solar disc irradiances. The objective of this study is to estimate the CSR over a cloudless turbid atmosphere using a published sky radiance model and a Radiative Transfer Model (RTM). Using 10 months of solar irradiance and aerosol optical depth measurements, results show that there is an underestimation in the CSR computed by means of the sky radiance model when compared to that computed by the RTM. Also, a high correlation coefficient of 0.87 was found between the CSR estimated from both models, implying that modifications to the sky radiance model are possible to accurately estimate the CSR
    corecore