80 research outputs found

    Performance of Vegetative Filters Considering Conservation Practices, Field Slope, and Storm Characteristics

    Get PDF
    Vegetative filter systems are being used nationwide as a management practice for controlling sediment delivery to water bodies, especially in agricultural settings. The installation of vegetative filter systems has increased in agricultural areas in part because of the National Conservation Buffer Initiative implemented by the USDA Natural Resources Conservation Service. Vegetative filters have the effect of retarding the velocity and reducing the sediment transport capacity of water flow (Tollner et al., 1982). As a result, a portion of the sediment in the water flowing through the filter will be deposited thus decreasing the movement of sediment to water bodies

    NF94-177 Nebraska Surge Irrigation Trials

    Get PDF
    This NebFact discusses the Nebraska Surge Irrigation Trials

    A Design Aid for Determining Width of Filter Strips

    Get PDF
    Watershed planners need a tool for determining width of filter strips that is accurate enough for developing cost-effective site designs and easy enough to use for making quick determinations on a large number and variety of sites. This study employed the process-based Vegetative Filter Strip Model to evaluate the relationship between filter strip width and trap¬ping efficiency for sediment and water and to produce a design aid for use where specific water quality targets must be met. Model simulations illustrate that relatively narrow filter strips can have high impact in some situations, while in others even a modest impact cannot be achieved at any practical width. A graphical design aid was developed for estimating the width needed to achieve target trapping efficiencies for different pollutants under a broad range of agricultural site conditions. Using the model simulations for sediment and water, a graph was produced containing a family of seven lines that divide the full range of possible relationships between width and trapping efficiency into fairly even increments. Simple rules guide the selection of one line that best describes a given field situation by considering field length and cover management, slope, and soil texture. Relationships for sediment-bound and dissolved pollutants are interpreted from the modeled relationships for sediment and water. Interpolation between lines can refine the results and account for additional variables, if needed. The design aid is easy to use, accounts for several major variables that determine filter strip performance, and is based on a validated, process-based, mathematical model. This design aid strikes a balance between accuracy and utility that fills a wide gap between existing design guides and mathematical models

    A Design Aid for Determining Width of Filter Strips

    Get PDF
    Watershed planners need a tool for determining width of filter strips that is accurate enough for developing cost-effective site designs and easy enough to use for making quick determinations on a large number and variety of sites. This study employed the process-based Vegetative Filter Strip Model to evaluate the relationship between filter strip width and trap¬ping efficiency for sediment and water and to produce a design aid for use where specific water quality targets must be met. Model simulations illustrate that relatively narrow filter strips can have high impact in some situations, while in others even a modest impact cannot be achieved at any practical width. A graphical design aid was developed for estimating the width needed to achieve target trapping efficiencies for different pollutants under a broad range of agricultural site conditions. Using the model simulations for sediment and water, a graph was produced containing a family of seven lines that divide the full range of possible relationships between width and trapping efficiency into fairly even increments. Simple rules guide the selection of one line that best describes a given field situation by considering field length and cover management, slope, and soil texture. Relationships for sediment-bound and dissolved pollutants are interpreted from the modeled relationships for sediment and water. Interpolation between lines can refine the results and account for additional variables, if needed. The design aid is easy to use, accounts for several major variables that determine filter strip performance, and is based on a validated, process-based, mathematical model. This design aid strikes a balance between accuracy and utility that fills a wide gap between existing design guides and mathematical models

    Irrigation Efficiency and Uniformity, and Crop Water Use Efficiency

    Get PDF
    This Extension Circular describes various irrigation efficiency, crop water use efficiency, and irrigation uniformity evaluation terms that are relevant to irrigation systems and management practices currently used in Nebraska, in other states, and around the world. The definitions and equations described can be used by crop consultants, irrigation district personnel, and university, state, and federal agency personnel to evaluate how efficiently irrigation water is applied and/or used by the crop, and can help to promote better or improved use of water resources in agriculture. As available water resources become scarcer, more emphasis is given to efficient use of irrigation water for maximum economic return and water resources sustainability. This requires appropriate methods of measuring and evaluating how effectively water extracted from a water source is used to produce crop yield. Inadequate irrigation application results in crop water stress and yield reduction. Excess irrigation application can result in pollution of water sources due to the loss of plant nutrients through leaching, runoff, and soil erosion

    Irrigation Efficiency and Uniformity, and Crop Water Use Efficiency

    Get PDF
    This Extension Circular describes various irrigation efficiency, crop water use efficiency, and irrigation uniformity evaluation terms that are relevant to irrigation systems and management practices currently used in Nebraska, in other states, and around the world. The definitions and equations described can be used by crop consultants, irrigation district personnel, and university, state, and federal agency personnel to evaluate how efficiently irrigation water is applied and/or used by the crop, and can help to promote better or improved use of water resources in agriculture. As available water resources become scarcer, more emphasis is given to efficient use of irrigation water for maximum economic return and water resources sustainability. This requires appropriate methods of measuring and evaluating how effectively water extracted from a water source is used to produce crop yield. Inadequate irrigation application results in crop water stress and yield reduction. Excess irrigation application can result in pollution of water sources due to the loss of plant nutrients through leaching, runoff, and soil erosion

    Soil Compaction I Where, how bad, a problem

    Get PDF
    Soil compaction is a more common problem now than it was 15 years ago, regardless of the tillage system used. Producers now use heavier tractors, larger implements, bigger combines, earlier spring tillage, reduced tillage, and no-till planting systems. While all of these have a potential to increase compaction, the major cause of the problem is conducting field operations when the soil is too wet. Most think about tilling wet soils in the spring as being the major problem, but harvesting a too-wet field in the fall can cause just as much compaction. Large combines and auger wagons can have loads exceeding 20 tons per axle. Continuous no-till has also created concerns regarding soil compaction and potential yield decreases. A study in Minnesota that compared no-till and other tillage systems used for 10 years on a clay loam soil showed the greatest soil density for the no-tilled soil. A study in Illinois indicated more compaction with no-till and other reduced tillage systems than with moldboard plow or chisel systems. Generally speaking, no-till is undesirable on a fine textured soil which has poor internal drainage or on a soil that has marginal tilth at the outset. On top of the soils themselves, the residue cover with no-till conserves moisture and slows soil drying, which can further complicate the problems of compaction when no-till is used on poorly drained soils. Soils with good structure, high organic matter, and good internal drainage are less likely to have compaction problems. Also, in low-rainfall areas, such as the Great Plains, compaction is less likely to be a problem than it is in areas of more moisture. The biggest single cause of compaction is the degree of wetness in a field when work is performed in or on that field. Defining compaction Compaction can be defined as the moving of soil particles closer together by external forces exerted by humans, animals, equipment, and/or the impact of water droplets. Packing the soil particles together results in the loss of pore space within the soil. This, in turn, leads to poorer internal drainage and aeration. Under many soil conditions compaction leads to slower water infiltration, which results in greater runoff and soil loss from both rainfall and irrigation. Compaction effects on the crop include reduced plant growth, especially root development, decreased crop yield , and delayed maturity

    EC81-713 It Pays to Test Your Irrigation Pumping Plant

    Get PDF
    Extension Circular 81-713 discusses how it pays to test your irrigation pumping plant
    • …
    corecore