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Abstract. In many agricultural regions, the human use of wa-
ter for irrigation is often ignored or poorly represented in land
surface models (LSMs) and operational forecasts. Because
irrigation increases soil moisture, feedback on the surface
energy balance, rainfall recycling, and atmospheric dynam-
ics is not represented and may lead to reduced model skill.
In this work, we describe four plausible and relatively simple
irrigation routines that can be coupled to the next generation
of hyper-resolution LSMs operating at scales of 1 km or less.
The irrigation output from the four routines (crop model, pre-
cipitation delayed, evapotranspiration replacement, and va-
dose zone model) is compared against a historical field-scale
irrigation database (2008–2014) from a 35 km2 study area
under maize production and center pivot irrigation in western
Nebraska (USA). We find that the most yield-conservative
irrigation routine (crop model) produces seasonal totals of
irrigation that compare well against the observed irrigation
amounts across a range of wet and dry years but with a
low bias of 80 mm yr−1. The most aggressive irrigation sav-
ing routine (vadose zone model) indicates a potential irriga-
tion savings of 120 mm yr−1 and yield losses of less than
3 % against the crop model benchmark and historical aver-
ages. The results of the various irrigation routines and asso-
ciated yield penalties will be valuable for future considera-
tion by local water managers to be informed about the po-
tential value of irrigation saving technologies and irrigation

practices. Moreover, the routines offer the hyper-resolution
LSM community a range of irrigation routines to better con-
strain irrigation decision-making at critical temporal (daily)
and spatial scales (< 1 km).

1 Introduction

Regional land surface models (LSMs) often ignore or do a
poor job of representing irrigation physics (Kumar et al.,
2015). This is in part due to the difficulty of validating ir-
rigation amount estimates; irrigation datasets are rare, in for-
mats that are difficult to work with on a regional scale (e.g.,
different reporting formats from one agency to another or
in paper records), and have a latency period of months to
years, making them impractical to use in operational fore-
casts. The USDA Farm and Ranch Irrigation Survey (USDA,
2014) contains survey data on the county level; however,
data are only reported every 5 years and irrigation data are
given on a pumping volume basis instead of depth per irri-
gated area as needed by LSMs (Siebert et al., 2010). Another
well-known irrigation database, AQUASTAT (FAO, 2008),
contains irrigation data on a spatial scale too coarse for in-
vestigating important feedback, like land–atmospheric cou-
pling, and lacks information for Europe and North America.
There are only a few studies that have used field-level irri-
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gation databases ( Grassini et al., 2011, 2014, 2015), mostly
focusing on benchmarking on-farm irrigation in relation to
crop production.

With the continual refinement in the spatial resolution of
LSMs down to < 1 km (Wood et al., 2011) and the coupling
to crop models (Kucharik, 2003), reliable irrigation data need
to be incorporated in the calibration and validation of LSMs.
Although the presence of irrigation does not necessarily im-
pact soil moisture contribution to the atmosphere, the soil
moisture–flux relationship is critical to surface energy bal-
ance and atmospheric dynamics. One area of particular im-
portance is the impact of soil moisture on atmospheric pro-
cesses, such as rainfall recycling (Findell and Eltahir, 1997),
the strength of atmospheric coupling (Koster et al., 2004),
and planetary boundary layer dynamics (Santanello et al.,
2011), all of which impact the skill in operational forecast
models. More complicated is that both irrigation timing and
volumes are based on human decision-making processes and
biophysical requirements (Gibson, 2016). For example, the
USDA found that 24 % of producers relied on crop calendars,
16 % on crop consultants, and 23 % on in situ probe technol-
ogy (USDA, 2014). Because irrigation decisions are depen-
dent on both processes, reliable historical irrigation data are
critical to understand why and how decisions were made in
order to accurately represent the physics in hyper-resolution
LSMs and operational forecast models. In the absence of irri-
gation data, LSMs have typically relied on mass balance ap-
proaches (Döll and Siebert, 2002; Wada et al., 2012) where
irrigation amounts close the water balance. While a reason-
able first approach, this methodology may introduce addi-
tional uncertainty into LSMs due to the complexity of rep-
resenting the human decision-making process on water use.
The uncertain irrigation schemes affect the time history of
soil moisture and thus our ability to properly assess the
impacts of human water use on coupled land–atmospheric
model physics.

The focus of this study was to investigate historical irri-
gation use at the critical field scale (∼ 0.8 by 0.8 km) in a
study area of 3500 ha in western Nebraska, which sits on the
edge of the US Corn Belt. This critical scale is defined as
a point where human water decisions are made due to the
history of land partitioning and the inherent geometry dic-
tated by the landscape. While it is a relatively small area,
the study site is an ideal location for assessing the sustain-
ability of groundwater pumping for the irrigation of crops.
The study area is a microcosm of many areas across the
globe, where humans rely on groundwater withdrawals for
their livelihoods (Mekonnen and Hoekstra, 2011). The study
area is at a critical location on a boundary where irrigation
supply volumes can no longer economically compensate for
the deficit between potential evapotranspiration (ETp) and
precipitation (P ). Of particular concern regarding impacts
on both human and natural ecosystems are the resultant de-
clines in the local water table due to irrigation (Young et
al., 2014). For example, the southern portion of the High

Plains aquifer (HPA) has had significant groundwater deple-
tion over the last 80 years, with losses of up to 50 % in sat-
urated thickness (Scanlon et al., 2012). In the northern HPA
(Butler et al., 2016), where this study area is located, intense
irrigation pumping has led to localized water table declines
(specifically in Box Butte County and widespread throughout
the neighboring Upper Republican Natural Resources Dis-
trict) but has yet to be widespread across the region (Young
et al., 2013). Given low recharge (Szilágyi and Jozsa, 2013;
Gibson, 2015; Wang et al., 2016) relative to irrigation pump-
ing, rising global food and water demands (FAO, 2009), and
the concomitant effects of climate change (Kumar, 2012),
the sustainability of this study area and the overall HPA sys-
tem in support of long-term irrigation agriculture is uncertain
(Butler et al., 2016). The study presented here is an important
first step in assessing water-saving technologies to continue
to make irrigation agriculture sustainable; there is a critical
need for this in meeting rising global food demands.

Here, we benchmark relatively long-term (2008–2014),
field-specific flow meter irrigation amounts within the study
area against a range of irrigation strategies. The data include
information on 55 fields (∼ 65 ha) producing maize under
center pivot irrigation. Datasets at this critical LSM scale are
rare due to privacy concerns and, as a result, are often aggre-
gated to county and seasonal totals (USDA, 2014; USDA-
NASS, 2014). This makes an assessment of irrigation depths
over a given area difficult to ascertain. This study therefore
fills a critical data need in the development and testing of the
next generation of hyper-resolution LSMs and operational
weather forecast models (Kumar et al., 2015). The next gen-
eration of LSMs will be essential to better assess the impacts
of irrigation on the surface energy balance as well as to eval-
uate the long-term sustainability of groundwater resources in
agricultural areas. We note that irrigation is a key component
of global food security, accounting for∼ 40 % of global food
production and ∼ 20 % of all arable land (Molden, 2007;
Schultz et al., 2005). There is no doubt that irrigation will
continue to expand in the future.

The primary objective of this study is to benchmark his-
torical irrigation amounts in the study area using differ-
ent plausible physically based irrigation triggering routines.
In the methods sections, we will summarize the four iden-
tified irrigation triggering routines: (1) crop model (CM),
(2) precipitation delayed (PD), (3) evapotranspiration re-
placement (ET), and (4) vadose zone model where irriga-
tion is triggered by a simulated pressure head (H). In the
results section, we will assess the impacts of annual varia-
tions in precipitation on irrigation and soil texture differences
in the study area. In the discussion, we will provide a gen-
eral framework for including plausible irrigation schemes in
LSMs and discuss any expected changes in irrigation behav-
ior as producers adopt various technologies into practice. The
framework and irrigation schemes provide LSMs with a prac-
tical guideline for estimating irrigation depths and timing as
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Figure 1. The study area located in western Nebraska with a 1 km
grid (white lines) overlaid on the study site. The black lines show
the individual field locations where irrigation volumes/depths are
obtained from the SPNRD.

well as a strategy for investigating technology adoption sce-
narios.

2 Methods

2.1 Description of study area and historical data

The study area is located in western Nebraska where the
South Platte River enters the state (Fig. 1). The site encom-
passes 55 fields with an average area of 65 ha under irrigated
maize production (3500 ha total area). Overhead sprinkler
irrigation from center pivots using water from the underly-
ing HPA is the most common form of irrigation in this area
as well as throughout Nebraska and the USA; it is a cost-
effective and more efficient option than flood irrigation. The
study area is semiarid, and annual crop referenced (maize)
evapotranspiration (ETc) is significantly higher than precip-
itation (P ) (HPRCC, 2016). The 7-year (2008–2014) aver-
age annual P is 440 mm yr−1 and average annual ETc is
820 (mm yr−1), as measured by the High Plains Regional
Climate Center weather station (HPRCC, 2016) located
within 10 km of the study area near Brule, NE.

Data obtained from SSURGO (Soil Survey Staff, 2016) in-
dicate that soil texture in the area falls within two USDA tex-
tural classes: sandy loam and loam (Fig. 2). Historical land
management data for the area are available from the South
Platte Natural Resources District (SPNRD, 2016). The SP-
NRD dataset includes field-specific information from 2008–
2014 on crop type, irrigation pumping volumes, and irri-
gated area. Detailed descriptions and quality control of NRD
databases can be found in Grassini et al. (2014) and Farmaha

Figure 2. The area-weighted soil texture of all fields plotted on the
USDA soil texture triangle, falling primarily in the sandy loam and
loam textures. Data downloaded from the NRCS Web Soil Survey.

et al. (2016). The above datasets provide the needed meteo-
rological forcing, model parameters, and calibration datasets
for running and evaluating the suite of irrigation modeling
routines described below.

2.2 Irrigation modeling routines

In the following sections, we will describe the four identified
irrigation triggering routines: crop model (CM), precipita-
tion delayed (PD), evapotranspiration replacement (ET), and
Hydrus-1D (H). The four irrigation triggering routines rep-
resent the upper limit of irrigation requirements, in which no
plant water stress occurs (CM), and the lower irrigation limit
needed to ensure minimal yield loss against a crop model
benchmark (H). Moreover, the four routines can be easily
coupled or implemented into LSMs where PD is the simplest
routine and H the most complex. We also note that the dif-
ference between historical irrigation practices and the lower
bound of simulated irrigation provides a potential irrigation
savings value in the study area. This irrigation savings value
will be important for evaluating the economics of new irri-
gation technologies as well as providing critical information
to policy makers and local stakeholders on the sustainable
management of the HPA (Butler et al., 2016). Table 1 pro-
vides a summary of key needed inputs and a list of tunable
parameters for each routine.

2.2.1 Crop model irrigation (CM)

A crop model, Hybrid-Maize (HM) (Yang et al., 2013), was
utilized to estimate irrigation requirements and yield poten-
tial under an idealized scenario of crop growth with no wa-
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Table 1. Summary of needed inputs and tunable parameters for each
irrigation routine.

Routine Needed inputs Tunable parameters

CM P , ETr, soils
I intensity (mm day−1, growing season
ETa/growing season length)

PD P I intensity

ET P , ETr, kc I intensity

H P , ETr, kc, soils, zr

I intensity, pressure irrigation trigger
point, root depth irrigation trigger
point(s)

ter stress. The model performance has been extensively val-
idated against measured yield in crops that received near-
optimal management across the Corn Belt (Grassini et al.,
2009, 2011). However, it has not been rigorously tested
for seasonal irrigation totals, which is one key outcome of
this study. Details on the model can be found in Yang et
al. (2013), and a brief description of the model is given here.
Inputs to this model include meteorological data, soil texture,
crop biophysical parameters, sowing date, and plant density.
The datasets are described above in Sect. 2.1. The soil water
dynamics over the root zone are simulated through a bucket
model approach with 10 cm thick layers. Drainage between
soil layers occurs when soil moisture exceeds field capacity.
Irrigation application is triggered when actual ET (ETa) is
less than crop referenced potential evapotranspiration (ETc),
ensuring that no water stress occurs throughout the entire
growing season. Irrigation depth is determined by the deficit
of soil moisture defined by the current moisture level sub-
tracted from 95 % of field capacity within the managed root
zone. Maximum water application per irrigation event was
set to 19.5 mm. When the depth-weighted unsaturated hy-
draulic conductivity (Kr) of the root zone is greater than or
equal to ETc, ETa is equal to ETc. Otherwise, ETa is equal to
the depth-weighted Kr of the root zone.

2.2.2 Precipitation delayed irrigation (PD)

Water application in an idealized land management operation
would consider all components of the water balance within
the decision-making process. However, in practice, precipi-
tation is often the only component considered due to (1) the
difficulty of accurately measuring the other water balance
components and (2) the minimal relative economic return
considering the perceived potential of crop yield loss ver-
sus savings due to reduced pumping/irrigation. With this in
mind, producers often develop “rules of thumb” to irrigate
up to a target total amount of water equal to irrigation plus
in-season rainfall (in the study area, 1 May to 30 Septem-
ber). Using these basic rules of thumb and local crop cal-
endar requirements, we suggest the following routine based
on precipitation data alone. However, we note that this is
not a recommendation for producer adoption, but instead

represents a simplified method of irrigation management
for modeling purposes. In addition, the applicability of this
method to other regions should be possible with complemen-
tary datasets (i.e., P and ETc). Recommendations obtained
from the SPNRD indicate that maize requires approximately
650 mm of total water (precipitation plus irrigation, P + I )
per growing season (http://www.spnrd.org/index.html). Field
observations indicate that irrigation often starts around mid-
June and concludes around mid-September, leading to a 100-
day irrigation season. Average irrigation application in the
absence of precipitation would be 6.5 mm day−1 or 19.5 mm
per 3-day period. This irrigation depth is consistent with pro-
ducer interviews and local expert knowledge. Three-day peri-
ods are critical to consider, as this is often the time required to
perform a single 360◦ rotation of a center pivot (i.e., dictated
by soil infiltration rates and well pumping capacity). In this
routine, if rainfall is greater than 6.5 mm day−1, then irriga-
tion for 1 day is met, and thus a 1-day delay is set. Likewise,
for a rainfall event of 13 mm day−1, then 2 days of irrigation
are met and irrigation is delayed by 2 days, and so on for
larger rain events. For simplicity, rain events and irrigation
delays are rounded to the nearest day and up to a maximum
7-day delay. For rainfall events greater than 45.5 mm day−1,
we assume a maximum delay of 7 days due to deep drainage
and runoff losses incurred during the event.

2.2.3 ET replacement irrigation (ET)

The primary purpose of irrigation is to ensure that ETa is able
to adequately keep up with ETc over the growing season,
as ETa is linearly correlated with yield (Passioura, 1977).
Proper management allows a deficit between applied water
and ETa in order to allow for adequate infiltration after rain-
fall. The deficit was assumed to be 6.5 mm for this routine
based on the average daily crop water requirement discussed
above. In this algorithm, when the deficit was greater than
6.5 mm during the irrigation season (15 June to 30 Septem-
ber), an irrigation event of 19.5 mm was triggered for the next
day. Again, an irrigation event of 19.5 mm was used as it rep-
resents a 3-day period over which the center pivot operates.

Estimating ETc is necessary in order to track the deficit be-
tween applied water and ETa. While estimating ETc is com-
plex given the variability of micrometeorological variables
from one field to another, in practical applications, crop co-
efficients are often used to surmise the differences in crop
biophysical relationships and the effect of soil (Shuttleworth,
1993). These coefficients are often published by local ser-
vices like the state climate office or the HPRCC in Nebraska.

Here, ETc (mm day−1) was estimated by following the sin-
gle crop coefficient method outlined in Allen et al. (1998):

ETc = ETrKc, (1)

where ETr (mm day−1) is reference crop ETp calculated from
micrometeorological variables and Kc is a dimensionless
empirical constant that encompasses crop development as
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well as the average effect of soil on evaporation rates. Daily
ETr data were determined from the HPRCC weather sta-
tion data. Kc values were calculated as a function of grow-
ing degree day accumulation (GDD) from the HPRCC data
(HPRCC, 2016). A single-day calculation of growing de-
grees (GDDdaily) is defined as

GDDdaily =
Tmax+ Tmin

2
− Tbase, (2)

where Tmax is the daily maximum temperature (◦C) (with
a maximum of 30 ◦C), Tmin is the daily minimum tempera-
ture (◦C), and Tbase is 10 ◦C. The GDD method is preferred as
it more accurately represents a proxy for crop development,
as opposed to a fixed number of days after sowing.

2.2.4 Hydrus-1D irrigation (H)

A physically based vadose zone model, Hydrus-1D (H1D)
(Šimůnek et al., 2013), was used to simulate irrigation re-
quirements based on predefined soil pressure head trigger
points in the root zone. In order to carry out the neces-
sary seasonal dynamics for annual crops (i.e., dynamic root
growth, root distribution), we coupled the HM and H1D
models using Matlab. We note that soil pressure triggered
irrigation events based on more than one soil pressure value,
flexible irrigation time frames, and dynamic root growth with
a specified distribution are unavailable in the standard H1D
code. Here we use Matlab to link together a series of 1-day
simulations (totaling 7 years), where model outputs (pres-
sure head at depth, flux rates, actual evapotranspiration, etc.)
at the end of the day were used to make a decision about
irrigation for the following day.

H1D simulates soil water dynamics and water flow with a
numerical approximation of the 1D Richards’ equation:

∂θ

∂t
=

(
∂

∂z

)[
K(θ)

(
∂h

∂z
+ 1

)]
− S, (3)

where θ is volumetric water content (cm3 cm−3), t is time
(day), z is the spatial location (cm), K(h) is unsaturated hy-
draulic conductivity (cm day−1), h is pressure head (cm), and
S is a sink term describing evapotranspiration (1 day−1). The
soil profile simulated is 6 m deep with a 1 cm node discretiza-
tion. Free drainage is set for the lower boundary condition, as
local depth to groundwater is on average 15 m (Korus et al.,
2013)

The H1D model requires that ETc be partitioned into po-
tential evaporation and potential transpiration. This is accom-
plished using Beer’s law:

Tp = ETc

(
1− e−k·LAI

)
, (4)

Ep = ETc− Tp, (5)

where Tp is potential transpiration (cm day−1), Ep is poten-
tial evaporation (cm day−1), k is the light extinction coeffi-
cient (set to 0.55; Yang et al., 2013), and LAI (m2 m−2) is

the leaf area index. For each year’s growing season, we sim-
ulated a daily LAI time series using HM. This same seasonal
dynamic was used for all simulations. In addition, HM was
used to estimate the date of silking for each simulated year.
Water stress is minimized during silking periods, as this is
the most critical grain filling period for yield. Most produc-
ers will heavily water in this period to ensure yield. In order
to accurately represent irrigation behavior, we forced irriga-
tion events every 3 days, 1 week before and after the silk-
ing date. In cases where a simulated day occurred during
the growing season, root depth (Zr, cm) and root distribu-
tion (ZrRD , dimensionless) parameters were calculated on a
daily basis from a predetermined GDD accumulation after
the planting date for each growing season. This process was
carried out following the equations outlined in the HM user
manual (Yang et al., 2013):

Zr =
GDD

GDDsilking
Zrmax , (6)

ZrRD = exp(−VDCZL/Zr) , (7)

where GDDsilking is growing degree days at silking, Zrmax is
a biophysical parameter representing the maximum depth the
root zone can reach (in cm) set to 150 cm (Yang et al., 2013),
VDC is a vertical distribution coefficient set to 3, and ZL is
the current depth in the root zone (cm).

Irrigation events and depths for the following day were
calculated by investigating the average soil pressure heads
at 30, 60, and 90 cm during the historical irrigation period
from 15 June through 30 September. Prior to the silking
date, the average soil pressure head at 30 and 60 cm is com-
puted and compared against a preset irrigation trigger value
set to −500 cm based on the dominant soil types in the area
(Fig. 2). Following the silking date, the average soil pressure
is computed at 30, 60, and 90 cm with the same trigger point
of −500 cm of pressure. This algorithm is based on the best
practice irrigation recommendations summarized in Irmak et
al. (2014). In practice, producers vary the irrigation pressure
trigger point based upon farmer risk aversion and soil type.
Given that yield is the primary economic driver over energy
costs for pumping water, this trigger point is often set at
conservative values. When the pressure head at the consid-
ered depths exceeds the trigger point, an irrigation event of
19.5 mm is set for the following day. The irrigation event is
added to any precipitation that may arrive randomly on that
day as well.

In order to numerically advance the models through time,
we set up a series of 1-day simulations and logical state-
ments. If the model date occurred outside of the growing sea-
son (1 October to 30 April), no changes were made to precip-
itation and bare surface was simulated. If the model day was
after planting (1 May) and before the start of the historical
irrigation season (15 June), only the root zone depth and root
distribution parameters were updated. For model dates dur-
ing the irrigation season (15 June to 30 September), the root
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Figure 3. Cumulative in-season precipitation depths measured at seven rain gauges and crop referenced evapotranspiration (ETc) calculated
from a weather station< 10 km away. Precipitation variability tends to increase with increasing seasonal totals.

zone depth, root distribution, and irrigation amounts were
changed for the following day. Using this routine, the model
was run continuously at 1-day intervals for the entire study
period (1 January 2008 to 31 December 2014).

2.3 Rainfall variability across the study site

Daily precipitation data for the years 2008–2014 were avail-
able from seven gauges within a 35 km radius of the study
site. In order to help assess the effect of precipitation vari-
ability on irrigation application, all seven time series along
with the average precipitation time series were used within
the four irrigation routines described above. In addition, all
irrigation routines that considered soil type were repeated for
the two dominant soil types in the study area, i.e., sandy loam
and loam.

3 Results

3.1 Precipitation variability and ETc

As expected, significant gauge-to-gauge variability was ob-
served within the seven rain gauge time series within each
growing season with a mean of 320 mm and a coefficient
of variation (CV) of 35 % (Fig. 3). In general, as pre-
cipitation totals increased, the range of seasonal precipita-
tion totals observed by the seven gauges increased as well
(slope= 0.246 mm yr−1, R2

= 0.38). There was no consis-
tent year-to-year spatial precipitation gradient, and no gauge
consistently reported high or low totals. We hypothesize that
this natural variability in rainfall is a large contributor to the
irrigation variability we see at the field level. This hypothe-
sis was beyond the scope of the current paper, but we sug-

Figure 4. Box and whisker plots of historical irrigation depths for
all sites. The upper and lower boundaries of the boxes indicate the
75th and 25th percentile, respectively. The horizontal line within
the boxes is the median value. Whiskers are the maximum and min-
imum values. Asterisks indicate that irrigation distribution deviates
from a normal distribution (D’Agostino–Pearson test, p< 0.01).

gest future research in this area (cf. Gibson, 2016). In terms
of growing season ETc, the HPRCC reported an average of
815 mm and was within 10 % of the county-level values esti-
mated by Sharma and Irmak (2012).

3.2 Historical field-scale irrigation

Average seasonal irrigation over the 2008–2014 period was
380 mm with a CV of 23 %. The distributions of irrigation
amounts are provided in the box and whisker plots given
in Fig. 4. Normal distributions and non-normal distribu-
tions with both negative and positive skewing were observed
(D’Agostino–Pearson test, p< 0.05). Growing season pre-
cipitation plus irrigation averaged 700 mm (Fig. 5) with a
CV of 5 %. The highest seasonal irrigation average occurred
during the growing season of 2012 (580 mm) due to an ex-
tremely dry growing season with only 80 mm of rainfall. We

Hydrol. Earth Syst. Sci., 21, 1051–1062, 2017 www.hydrol-earth-syst-sci.net/21/1051/2017/



J. Gibson et al.: A case study of field-scale maize irrigation patterns in western Nebraska 1057

Figure 5. Observed growing season totals for precipitation (P ), ir-
rigation (I ), and P + I . The dashed line represents the historical
average for P + I .

found that soil texture was not a significant factor affecting
irrigation application at the field scale in this region. This
finding was consistent with results from central Nebraska
(Gibson, 2016). After grouping the fields by soil type (loam
and sandy loam), we found that the irrigation means for all
years were not statistically different from each other (Stu-
dent’s t test, p= 0.73). This indicates that soil type did not
factor into the irrigation decision-making process.

3.3 Comparison of historical seasonal irrigation
amounts with four irrigation routines

The results of the comparison between the historical irriga-
tion (2008–2014) and the four irrigation routines are summa-
rized in Fig. 6. Both the CM and PD routines reproduce the
trend of the historical irrigation amounts but with a low off-
set (similar slopes). CM irrigation water requirements were
on average 80 mm lower (20 % of total) relative to histori-
cal irrigation. For PD, the average seasonal difference was
40 mm lower (10 % of total). For ET and H, simulated irriga-
tion amounts were 80 mm (20 % of total) and 120 mm (30 %
of total) lower than the historical average, respectively. We
also note that the slopes of the observed irrigations and the
CM and PD for the given years were generally similar. How-
ever, it is obvious from Fig. 6 that the slopes of ET and H
were different from the observations, which results in larger
deviations in drier years and thus a potential for greater irri-
gation savings. The implications for water management will
be discussed in the next section.

3.4 Irrigation sensitivity to rainfall

All irrigation routines responded to differences in the eight
rainfall time series, and this response is represented as ver-
tical error bars in Fig. 6. The difference between the highest
and lowest irrigation amount for each growing season was
on average 75 mm, or 20 % of average irrigation totals. The
largest difference in irrigation totals occurred in 2008 for all
irrigation routines with an average of 130 mm between all
four routines, and the smallest difference occurred in 2012 at

Table 2. The van Genuchten parameters used in the Hydrus-1D sim-
ulations.

Texture θr θs α n Ks
(–) (–) (1/cm) (–) (cm day−1)

Sandy loam 0.048 0.385 0.0289 1.389 31.91
Loam 0.060 0.400 0.0127 1.458 10.85

an average of 27 mm due to uniformly low precipitation. The
analysis illustrates that the variation in irrigation amounts de-
pends on which rainfall gauge is used to make a decision.
Given that producers often have fields distributed across a
region, the uncertainty in local rainfall directly propagates
variations in irrigation amounts (Gibson, 2016). Future re-
search efforts should investigate the effect of spatial rainfall
variability on producer decision-making, but this was beyond
the scope of the current study.

3.5 Soil texture impact on irrigation routines

We found that the two dominant soil textures in the study
area did not have a significant impact on irrigation amounts
under CM and H. ET and PD do not have a soil component
considered in their routine and are therefore not impacted
by soil texture. In the case of CM, average irrigation was
within 1 % for all years. For H, the irrigation average of the
sandy loam soil was 10 % lower than the average of the loam
soil. The soil hydraulic parameters used for both soil textures
were determined using ROSETTA (Schaap et al., 2001) and
are presented in Table 2.

3.6 Simulated yield under irrigation routines

Following the simulated irrigation for the routines of PD, ET,
and H, the (P + I ) time series were reinserted back into the
crop model for all years to estimate yield impacts (Fig. 7).
The crop model yielded an average of 14.6 Mg ha−1 over the
study period. The yield gap (i.e., the difference between yield
potential and actual yield) of US irrigated maize represents
approximately 15 % of the potential (Grassini et al., 2013;
Global Yield Gap and Water Productivity Atlas, 2016), sug-
gesting an average actual yield of 12.4 Mg ha−1 for the study
area, which is within 5 % of the historically reported yield.
For the three routines and for all years, simulated yields were
on average within 3 % of the simulated yield based on the
CM. The results indicate that the various irrigation schedul-
ing strategies did not have a large impact on yield, but they
reduced irrigation amounts substantially; hence, they may be
a sound economic option for producers.

3.7 Simulated growing season irrigation application

The daily time series of simulated irrigation application can
be seen in Fig. 8. Data for the observed sub-growing season
irrigation application are unavailable. Irrigation application
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Figure 6. Historical irrigation vs. the four simulated irrigation routines for sandy loam (left panel) and loam (right panel). The vertical error
bars are the standard error of the mean from the precipitation sensitivity analysis, and the horizontal error bars are the standard error of the
mean from observed irrigation.

Figure 7. Potential yield simulated by Hybrid-Maize using the four
irrigation routines: crop model (CM), precipitation delayed (PD),
evapotranspiration replacement (ET), and Hydrus-1D (H).

tends to begin later in the growing season for the two routines
that consider soil (CM and H). This is likely due to the rou-
tines allowing soil moisture to be depleted before irrigation
is triggered, thus creating the reduced pumping and irriga-
tion savings. The amount of soil moisture storage is typically
near field capacity, but in exceptionally dry years (2012) this
storage is reduced and thus will lead to less of a delay at the
start of the growing season.

4 Discussion

4.1 Temporal variability of applied irrigation

Historically, the study area has had a consistent amount of
total seasonal water (P + I ) from year to year. The percent
of irrigation to applied water (I/(P + I )) was on average
55 %; notably in 2012, this was as high as 88 %. The relative
weight of irrigation to precipitation highlights the importance
of constraining irrigation amounts for proper water balance
closure within the study area, as well as in other areas with
intense irrigation application. Given the high seasonal rates
of irrigation to precipitation, no doubt the soil moisture will

be adversely affected when compared to a rainfed area. More
importantly, the impacts on the local surface energy balance
(Santanello et al., 2011), rainfall recycling, and skill in ob-
servational forecasts may be diminished without properly
accounting for irrigation. For example, regional mesoscale
modeling illustrated that up to 40 % of East African annual
rainfall can be attributed to irrigation across India (de Vrese
et al., 2016). With the suggested findings here on reduced ir-
rigation needs (up to 115 mm or 30 %), the potential changes
to precipitation patterns across the HPA due to the adoption
of irrigation scheduling technology should be further inves-
tigated.

The study area is currently under groundwater appropri-
ation, with a historical increase in depth to groundwater of
1.2 m from 1971 to 2013 (SPNRD, 2013; Young et al., 2013).
Precipitation pattern changes in the area induced by global
warming are believed to lead to less frequent but more in-
tense storms with an increase in total precipitation (Dai,
2011). However, the timing of precipitation is of equal con-
cern as totals, as more infrequent rain events may still lead
to increased pumping with the same seasonal totals. The sce-
nario of changing precipitation amounts and timing is not
unique to the study area, but it is a more general pattern of
the region; this highlights the need for explicit treatment of
irrigation depths and timing to fully understand the complex
feedback that exists beneath the land surface and atmosphere.
The irrigation routines suggested in this work can be used as
a first assessment of the likely irrigation amounts due to dif-
ferent observed scheduling practices (USDA, 2014).

4.2 Spatial variability of applied irrigation

The rainfall sensitivity analysis demonstrated the effects and
uncertainty for each of the four irrigation routines investi-
gated. Lower rainfall years had lower spatial variability and,
as a result, simulated irrigation for each routine led to sim-
ilar values. However, this behavior was not consistent with
the observed irrigation data, in which the lowest rainfall
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Figure 8. Example of simulated growing season cumulative P and P + I with daily P values plotted on the secondary y axis for the
four irrigation routines in a wet (2010) and dry year (2012). Irrigation starts later for routines that track soil moisture, thus leading to reduced
pumping.

year (2012) had the largest standard deviation (168 mm) for
applied irrigation. The results are likely due to two reasons:
(1) producers give up irrigation at some point during the
growing season as their crop parishes in the extreme heat and
drought conditions and (2) differences in well-to-well pump-
ing capacity become more apparent with increased pumping
demand. Although no direct work has been done to confirm
differences in pumping capacity or inefficiencies in the study
area, the general effect has been explored through modeling
in other areas (Foster et al., 2014). With respect to LSMs,
these two factors represent significant deviations from water
balance closure approaches, making it challenging to include
realistic irrigation values in dry years. Therefore, additional
studies and datasets similar to those presented here are crit-
ical for the calibration and validation of the next generation
of hyper-resolution LSMs.

With regard to soil texture differences in the study area,
observed irrigation data indicated no difference between
fields in these two texture classes. Similar behavior was seen
from the irrigation routine simulations, which showed a 10 %
difference for H and a 1 % difference for CM. We note that
given the similar soil texture classes (and thus the soil hy-
draulic parameters), this result is not unexpected. In practice,
producers are beginning to adopt precision irrigation tech-
niques (Hedley and Yule, 2009; Hedley et al., 2013). Small-
scale features within a field (e.g., sandy or gravelly areas,
underperforming parts of the field, waterways, pivot roads,
etc.) can be better managed with the new technology. There-
fore, managing fields by following one dominant soil type
(i.e., irrigation pressure trigger point) may be highly ineffi-
cient (Kranz et al., 2014). More refined and consistent soil
texture data across arbitrary political boundaries (Chaney et
al., 2016) are needed to better account for differences in ir-
rigation water application on the subfield scale, especially in
areas with increasing adoption of precision agriculture tech-
nology.

4.3 Potential for reduced pumping

The four irrigation routines represent different levels of al-
lowable water stress that develop in the maize. The CM rou-
tine is the lowest risk approach with respect to yield and
represents the modeled upper limit of required irrigation to
maintain a stress-free management scenario. It is hypothe-
sized that any irrigation application above this represents ir-
rigation application due to risk aversion and will not appre-
ciably increase yield. Comparisons between 2008 and 2014
indicate that the slopes of the applied irrigation from ob-
served irrigation are indistinguishable, but with a bias of
∼ 80 mm yr−1 more observed irrigation. This indicates that
producers are averaging an additional three to four irrigation
cycles beyond what the CM indicates. The differences in ir-
rigation totals from the other three irrigation routines are the
result of increasing allowable water deficits in the routines. A
reduction of 115 mm or 30 % in irrigation was observed for
H when compared to the historical average. We note that this
hypothetical scenario requires perfect management with full
trust of the technology and may not be achievable in practical
applications. However, we anticipate that a 50–75 mm reduc-
tion over a short technology adoption period (2–4 years) is
feasible, particularly in areas with strong university exten-
sion programs and/or producer-to-producer knowledge ex-
change (Irmak et al., 2012). In addition, these hypothetically
reduced pumping numbers may be useful to local, state, and
federal policy makers in future water management decisions
and investment in cost-sharing technology programs.

4.4 Assessment of center pivot irrigation routines in
hyper-resolution land surface models

The four irrigation routines, although biased (i.e., contain-
ing an offset), capture year-to-year variation in irrigation in
western Nebraska. Given the widespread use of center piv-
ots, we expect the irrigation routines to capture year-to-year
variation for the HPA and parts of the eastern USA. We note
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that the magnitude of the offset is likely related to local pro-
ducer behavior and influenced by social norms and risk aver-
sion. Gibson (2016) provides a fuller assessment of irrigation
behavior throughout central Nebraska. We note that it is un-
clear how these routines would behave in areas with center
pivots outside the USA (i.e., Brazil, South Africa, and Aus-
tralia), where energy costs for pumping may be more restric-
tive drivers of human decisions on irrigation. An assessment
of these routines in those areas would require further valida-
tion.

We believe that the routines, combined with a reasonable
offset correction, could be easily incorporated into future
hyper-resolution LSMs with the above routine descriptions
and readily available LSM model output or datasets (see Ta-
ble 1). Clearly, accurate and local precipitation is critical in
driving these irrigation routines and capturing producer be-
havior. This topic deserves more research, particularly the
opportunity to combine low-cost in situ gauges with radar
and remote-sensing products. Additionally, we note that the
four routines could be run offline in order to provide reason-
able guesses of applied irrigation for a given irrigation sea-
son. This may be beneficial in representing processes not ex-
plicitly considered in LSMs (Kumar et al., 2015) or making
future assessments and recommendations about water avail-
ability for managers. Finally, the four routines provide rea-
sonable irrigation bounds and, more importantly, predictions
about decreases in irrigation as technology is introduced and
adopted in novel areas.

5 Conclusions

In this work, we describe four plausible and relatively simple
irrigation routines that could be coupled to the next genera-
tion of hyper-resolution LSMs operating at scales of 1 km or
less. The crop model irrigation outputs reproduce the year-to-
year variability of the observed irrigation amounts with a low
bias of 80 mm yr−1. Predictions from the vadose zone model
indicate potential irrigation savings of up to 120 mm yr−1 for
maize. In addition, daily precipitation variability across the
study area was found to introduce significant variability in
daily irrigation decision-making depending on which value
was considered. Future work could focus on providing ac-
curate real-time 1 km daily precipitation products through
a combination of in situ low-cost gauges, radar, and satel-
lite remote-sensing. Accurate and real-time precipitation re-
mains a critical weakness in rural and vast landscapes. Given
the clustering of irrigation fields in western Nebraska, the
number of in situ gauges needed could be significantly re-
duced to provide high-density networks in key areas. The
findings from this work may be useful to local water man-
agers and stakeholders in evaluating potential water-saving
technologies. In addition, the simple routines could be cou-
pled to future hyper-resolution land surface models that seek
to understand the degree of land–surface atmospheric cou-

pling and the consequences for operational forecasts. This
understanding is essential as society continually recognizes
the importance of human activities for the global water cycle
and invests more resources in understanding the water–food–
energy nexus.

6 Data availability

The meteorological data used in this paper was provided
by the HPRCC (2016, http://www.hprcc.unl.edu/). Irrigation
flow meter data was obtained from the SPRND and is not
widely available for public use. Yearly summary reports are
available from the SPNRD (http://www.spnrd.org/). Soil data
was obtained from SSURGO (Soil Survey Staff, 2016, http://
websoilsurvey.sc.egov.usda.gov/App/HomePage.htm). Data
and model subroutines can also be requested from the cor-
responding author.
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Foster, T., Brozović, N., and Butler, A. P.: Modeling irrigation be-
havior in groundwater systems, Water Resour. Res., 50, 6370–
6389, doi:10.1002/2014WR015620, 2014.

Gibson, J. P.: Estimation of Deep Drainage Differences between
Till and No-Till Irrigated Agriculture, MS Thesis, University of
Nebraska-Lincoln, Lincoln, NE, 2015.

Gibson, K. E. B.: More Crop per Drop: Benchmarking On-Farm
Irrigation Water Use for Crop Production, MS Thesis, University
of Nebraska-Lincoln, Lincoln, NE, 2016.

Global Yield Gap and Water Productivity Atlas: available at: http:
//www.yieldgap.org, last access: 7 July 2016.

Grassini, P., Yang, H. S., and Cassman, K. G.: Limits to maize pro-
ductivity in Western Corn-Belt: A simulation analysis for fully ir-
rigated and rainfed conditions, Agr. Forest Meteorol., 149, 1254–
1265, doi:10.1016/j.agrformet.2009.02.012, 2009.

Grassini, P., Yang, H. S., Irmak, S., Thorburn, J., Burr, C., and
Cassman, K. G.: High-yield irrigated maize in the Western US
Corn Belt: II. Irrigation management and crop water productiv-
ity, Field Crop. Res., 120, 133–141, 2011.

Grassini, P., Torrion, J. A., Cassman, K. G., and Specht, J. E.:
Benchmarking yield and efficiency of corn & soybean cropping
systems in Nebraska, University of Nebraska-Lincoln, Lincoln,
NE, 2013.

Grassini, P., Torrion, J. A., Cassman, K., Specht, J., Grassini, P.,
Torrion, J. A., Cassman, K. G., Yang, H. S., and Specht, J. E.:
Drivers of spatial and temporal variation in soybean yield and
irrigation requirements in the western US Corn Belt Drivers of
spatial and temporal variation in soybean yield and irrigation re-
quirements in the western US Corn Belt, Field Crops Res., 163,
32–46, doi:10.1016/j.fcr.2014.04.005, 2014.

Grassini, P., Torrion, J. A., Yang, H. S., Rees, J., Andersen, D., Cass-
man, K. G., and Specht, J. E.: Soybean yield gaps and water pro-
ductivity in the western U.S. Corn Belt, Field Crop. Res., 179,
150–163, 2015.

Hedley, C. B. and Yule, I. J.: A method for spatial prediction of
daily soil water status for precise irrigation scheduling, Agr. Wa-
ter Manage., 96, 1737–1745, doi:10.1016/j.agwat.2009.07.009,
2009.

Hedley, C. B., Roudier, P., Yule, I. J., Ekanayake, J., and Brad-
bury, S.: Soil water status and water table depth modelling using
electromagnetic surveys for precision irrigation scheduling, Geo-
derma, 199, 22–29, doi:10.1016/j.geoderma.2012.07.018, 2013.

HPRCC: Weather and Climate Data via an Automated Weather
Data Network from the NOAA High Plains Climate Cen-
ter (HPRCC), High Plains Reg. Clim. Center, Univ. Nebraska-
Lincoln, Lincoln, NE, available at: http://www.hprcc.unl.edu/
awdn/, last access: 7 August 2016.

Irmak, S., Burgert, M. J., Yang, H. S., Cassman, K. G., Walters,
D. T., Rathje, W. R., Payero, J. O., Grassini, P., Kuzila, M. S.,
Brunkhorst, K. J., Van DeWalle, B., Rees, J. M., Kranz, W. L.,
Eisenhauer, D. E., Shapiro, C. A., Zoubek, G. L., and Teichmeier,
G. J.: Large scale on-farm implementation of soil moisture-based
irrigation management strategies for increasing maize water pro-
ductivity, T. ASABE, 55, 881–894, 2012.

Irmak, S., Payero, J. O., VanDeWalle, B., Rees, J., and Zoubek,
G. L.: Principles and Operational Characteristics of Watermark
Granular Matrix Sensor to Measure Soil Water Status and Its
Practical Applications for Irrigation Management in Various Soil
Textures, Biol. Syst. Eng. Pap. Publ. Pap. 332, University of
Nebraska-Lincoln, Lincoln, NE, 1–14, 2014.

Korus, J. T., Howard, L. M., Young, A. R., Divine, D. P., Burbach,
M. E., Jess, M. J. and Hallum, D. R.: The Groundwater Atlas of
Nebraska, 3rd Edn., Conservation and Survey Division, Resource
Atlas No. 4b/2013, School of Natural Resources, University of
Nebraska-Lincoln, Lincoln, 2013.

Koster, R. D., Dirmeyer, P. A., Guo, Z. C., Bonan, G., Chan, E., Cox,
P., Gordon, C. T., Kanae, S., Kowalczyk, E., Lawrence, D., Liu,
P., Lu, C. H., Malyshev, S., McAvaney, B., Mitchell, K., Mocko,
D., Oki, T., Oleson, K., Pitman, A., Sud, Y. C., Taylor, C. M.,
Verseghy, D., Vasic, R., Xue, Y. K., Yamada, T., and Team, G.:
Regions of strong coupling between soil moisture and precipi-
tation, Science, 305, 1138–1140, doi:10.1126/science.1100217,
2004.

Kranz, W. L., Irmak, S., Martin, D. L., Shaver, T. M., and van Donk,
S. J.: Variable Rate Application of Irrigation Water with Cen-
ter Pivots, Nebraska Ext., available at: http://extension.unl.edu/
publications (last access: 1 August 2016), 2014.

Kucharik, C. J.: Evaluation of a Process-Based Agro-Ecosystem
Model (Agro-IBIS) across the U.S. Corn Belt: Simulations of the
Interannual Variability in Maize Yield, Earth Interact., 7, 1–33,
2003.

Kumar, C. P.: Climate Change and Its Impact on Groundwater Re-
sources, Int. J. Eng. Sci., 1, 43–60, 2012.

Kumar, S. V., Peters-Lidard, C. D., Santanello, J. A., Reichle, R.
H., Draper, C. S., Koster, R. D., Nearing, G., and Jasinski, M.
F.: Evaluating the utility of satellite soil moisture retrievals over
irrigated areas and the ability of land data assimilation methods
to correct for unmodeled processes, Hydrol. Earth Syst. Sci., 19,
4463–4478, doi:10.5194/hess-19-4463-2015, 2015.

Mekonnen, M. M. and Hoekstra, A. Y.: The green, blue and
grey water footprint of crops and derived crop products, Hy-
drol. Earth Syst. Sci., 15, 1577–1600, doi:10.5194/hess-15-1577-
2011, 2011.

Molden, D. (Ed.): Water for Food, Water for Life: A Com-
prehensive Assessment of Water Management in Agriculture.
Earthscane/International Water Management Institute, London,
Colombo, Sri Lanka, 2007.

www.hydrol-earth-syst-sci.net/21/1051/2017/ Hydrol. Earth Syst. Sci., 21, 1051–1062, 2017

http://dx.doi.org/10.1002/wcc.81
http://dx.doi.org/10.1002/2016gl068146
http://dx.doi.org/10.1029/2001WR000355
http://www.fao.org/nr/water/aquastat/data/query/index.html?lang=en
http://www.fao.org/nr/water/aquastat/data/query/index.html?lang=en
http://dx.doi.org/10.1029/96wr03756
http://dx.doi.org/10.1002/2014WR015620
http://www.yieldgap.org
http://www.yieldgap.org
http://dx.doi.org/10.1016/j.agrformet.2009.02.012
http://dx.doi.org/10.1016/j.fcr.2014.04.005
http://dx.doi.org/10.1016/j.agwat.2009.07.009
http://dx.doi.org/10.1016/j.geoderma.2012.07.018
http://www.hprcc.unl.edu/awdn/
http://www.hprcc.unl.edu/awdn/
http://dx.doi.org/10.1126/science.1100217
http://extension.unl.edu/publications
http://extension.unl.edu/publications
http://dx.doi.org/10.5194/hess-19-4463-2015
http://dx.doi.org/10.5194/hess-15-1577-2011
http://dx.doi.org/10.5194/hess-15-1577-2011


1062 J. Gibson et al.: A case study of field-scale maize irrigation patterns in western Nebraska

Passioura, J. B.: Grain yield, harvest index, and water use of wheat,
J. Aust. Inst. Agr. Sci., 43, 117–120, 1977.

Santanello, J. A., Peters-Lidard, C. D., and Kumar, S. V: Diag-
nosing the sensitivity of local land-atmosphere coupling via the
soil moisture-boundary layer interaction, J. Hydrometeorol., 12,
766–786, doi:10.1175/jhm-d-10-05014.1, 2011.

Scanlon, B. R., Faunt, C. C., Longuevergne, L., Reedy, R. C., Al-
ley, W. M., McGuire, V. L., and McMahon, P. B.: Groundwater
depletion and sustainability of irrigation in the US High Plains
and Central Valley, P. Natl. Acad. Sci. USA, 109, 9320–9325,
doi:10.1073/pnas.1200311109, 2012.

Schaap, M. G., Leij, F. J., and van Genuchten, M. T.: ROSETTA: a
computer program for estimating soil hydraulic parameters with
hierarchical pedotransfer functions, J. Hydrol., 251, 163–176,
2001.

Schultz, B., Thatte, C. D., and Labhsetwar, V. K.: Irrigation and
drainage: Main contributors to global food production, Irrig.
Drain., 54, 263–278, 2005.

Sharma, V. and Irmak, S.: Mapping spatially interpolated precipi-
tation, reference evapotranspiration, actual crop evapotranspira-
tion, and net irrigation requirements in Nebraska: Part II Actual
evapotranspiration and net irrigation requirements, T. ASABE,
55, 923–936, doi:10.13031/2013.41524, 2012.

Shuttleworth, W. J.: chap. 4: Evaporation, in: Handbook of Hydrol-
ogy, edited by: Maidment, D., McGraw-Hill, New York, 1993.

Siebert, S., Burke, J., Faures, J. M., Frenken, K., Hoogeveen, J.,
Döll, P., and Portmann, F. T.: Groundwater use for irrigation
– A global inventory, Hydrol. Earth Syst. Sci., 14, 1863–1880,
doi:10.5194/hess-14-1863-2010, 2010.
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