41 research outputs found
Car-oriented mean-field theory for traffic flow models
We present a new analytical description of the cellular automaton model for
single-lane traffic. In contrast to previous approaches we do not use the
occupation number of sites as dynamical variable but rather the distance
between consecutive cars. Therefore certain longer-ranged correlations are
taken into account and even a mean-field approach yields non-trivial results.
In fact for the model with the exact solution is reproduced. For
the fundamental diagram shows a good agreement with results from
simulations.Comment: LaTex, 10 pages, 2 postscript figure
Planar fiber-chip-coupling using angle-polished polarization maintaining fibers
We report on our latest developments of a planar fiber-chip-coupling scheme, using angle polished, polarization maintaining (PM) fibers. Most integrated photonic chip components are polarization sensitive and a suitable way to launch several wavelength channels with the same polarization to the chip is the use of PM fibers. Those impose several challenges at processing and handling to achieve a stable, permanent, and low-loss coupling. We present the processing of the fibers in detail and experimental results for our planar and compact fiber-chip-coupling technique
Spontaneous Jamming in One-Dimensional Systems
We study the phenomenon of jamming in driven diffusive systems. We introduce
a simple microscopic model in which jamming of a conserved driven species is
mediated by the presence of a non-conserved quantity, causing an effective long
range interaction of the driven species. We study the model analytically and
numerically, providing strong evidence that jamming occurs; however, this
proceeds via a strict phase transition (with spontaneous symmetry breaking)
only in a prescribed limit. Outside this limit, the nearby transition
(characterised by an essential singularity) induces sharp crossovers and
transient coarsening phenomena. We discuss the relevance of the model to two
physical situations: the clustering of buses, and the clogging of a suspension
forced along a pipe.Comment: 8 pages, 4 figures, uses epsfig. Submitted to Europhysics Letter
Planar fiber-chip-coupling using angle-polished polarization maintaining fibers
We report on our latest developments of a planar fiber-chip-coupling scheme, using angle polished, polarization maintaining (PM) fibers. Most integrated photonic chip components are polarization sensitive and a suitable way to launch several wavelength channels with the same polarization to the chip is the use of PM fibers. Those impose several challenges at processing and handling to achieve a stable, permanent, and low-loss coupling. We present the processing of the fibers in detail and experimental results for our planar and compact fiber-chip-coupling technique
Critical behavior of a traffic flow model
The Nagel-Schreckenberg traffic flow model shows a transition from a free
flow regime to a jammed regime for increasing car density. The measurement of
the dynamical structure factor offers the chance to observe the evolution of
jams without the necessity to define a car to be jammed or not. Above the
jamming transition the dynamical structure factor exhibits for a given k-value
two maxima corresponding to the separation of the system into the free flow
phase and jammed phase. We obtain from a finite-size scaling analysis of the
smallest jam mode that approaching the transition long range correlations of
the jams occur.Comment: 5 pages, 7 figures, accepted for publication in Physical Review
Two-lane traffic rules for cellular automata: A systematic approach
Microscopic modeling of multi-lane traffic is usually done by applying
heuristic lane changing rules, and often with unsatisfying results. Recently, a
cellular automaton model for two-lane traffic was able to overcome some of
these problems and to produce a correct density inversion at densities somewhat
below the maximum flow density. In this paper, we summarize different
approaches to lane changing and their results, and propose a general scheme,
according to which realistic lane changing rules can be developed. We test this
scheme by applying it to several different lane changing rules, which, in spite
of their differences, generate similar and realistic results. We thus conclude
that, for producing realistic results, the logical structure of the lane
changing rules, as proposed here, is at least as important as the microscopic
details of the rules
Stochastic boundary conditions in the deterministic Nagel-Schreckenberg traffic model
We consider open systems where cars move according to the deterministic
Nagel-Schreckenberg rules and with maximum velocity , what is an
extension of the Asymmetric Exclusion Process (ASEP). It turns out that the
behaviour of the system is dominated by two features: a) the competition
between the left and the right boundary b) the development of so-called
"buffers" due to the hindrance an injected car feels from the front car at the
beginning of the system. As a consequence, there is a first-order phase
transition between the free flow and the congested phase accompanied by the
collapse of the buffers and the phase diagram essentially differs from that of
(ASEP).Comment: 29 pages, 26 figure
Jamming transition in a homogeneous one-dimensional system: the Bus Route Model
We present a driven diffusive model which we call the Bus Route Model. The
model is defined on a one-dimensional lattice, with each lattice site having
two binary variables, one of which is conserved (``buses'') and one of which is
non-conserved (``passengers''). The buses are driven in a preferred direction
and are slowed down by the presence of passengers who arrive with rate lambda.
We study the model by simulation, heuristic argument and a mean-field theory.
All these approaches provide strong evidence of a transition between an
inhomogeneous ``jammed'' phase (where the buses bunch together) and a
homogeneous phase as the bus density is increased. However, we argue that a
strict phase transition is present only in the limit lambda -> 0. For small
lambda, we argue that the transition is replaced by an abrupt crossover which
is exponentially sharp in 1/lambda. We also study the coarsening of gaps
between buses in the jammed regime. An alternative interpretation of the model
is given in which the spaces between ``buses'' and the buses themselves are
interchanged. This describes a system of particles whose mobility decreases the
longer they have been stationary and could provide a model for, say, the flow
of a gelling or sticky material along a pipe.Comment: 17 pages Revtex, 20 figures, submitted to Phys. Rev.
Recommended from our members
Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN.
We report on the neutrino mass measurement result from the first four-week science run of the Karlsruhe Tritium Neutrino experiment KATRIN in spring 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are energy analyzed by a high-resolution MAC-E filter. A fit of the integrated electron spectrum over a narrow interval around the kinematic end point at 18.57 keV gives an effective neutrino mass square value of (-1.0_{-1.1}^{+0.9}) eV^{2}. From this, we derive an upper limit of 1.1 eV (90% confidence level) on the absolute mass scale of neutrinos. This value coincides with the KATRIN sensitivity. It improves upon previous mass limits from kinematic measurements by almost a factor of 2 and provides model-independent input to cosmological studies of structure formation
Clinically relevant mutations in the ABCG2 transporter uncovered by genetic analysis linked to erythrocyte membrane protein expression
The ABCG2 membrane protein is a key xeno- and endobiotic transporter, modulating the absorption and metabolism of pharmacological agents and causing multidrug resistance in cancer. ABCG2 is also involved in uric acid elimination and its impaired function is causative in gout. Analysis of ABCG2 expression in the erythrocyte membranes of healthy volunteers and gout patients showed an enrichment of lower expression levels in the patients. By genetic screening based on protein expression, we found a relatively frequent, novel ABCG2 mutation (ABCG2-M71V), which, according to cellular expression studies, causes reduced protein expression, although with preserved transporter capability. Molecular dynamics simulations indicated a stumbled dynamics of the mutant protein, while ABCG2-M71V expression in vitro could be corrected by therapeutically relevant small molecules. These results suggest that personalized medicine should consider this newly discovered ABCG2 mutation, and genetic analysis linked to protein expression provides a new tool to uncover clinically important mutations in membrane proteins. © 2018 The Author(s)