13,215 research outputs found

    Hardware simulation of Ku-band spacecraft receiver and bit synchronizer, volume 1

    Get PDF
    A hardware simulation which emulates an automatically acquiring transmit receive spread spectrum communication and tracking system and developed for use in future NASA programs involving digital communications is considered. The system architecture and tradeoff analysis that led to the selection of the system to be simulated is presented

    Hardware simulation of KU-band spacecraft receiver and bit synchronizer, phase 2, volume 1

    Get PDF
    The acquisition behavior of the PN subsystem of an automatically acquiring spacecraft receiver was studied. A symbol synchronizer subsystem was constructed and integrated into the composite simulation of the receiver. The overall performance of the receiver when subjected to anomalies such as signal fades was evaluated. Potential problems associated with PN/carrier sweep interactions were investigated

    Ground State Spin Structure of Strongly Interacting Disordered 1D Hubbard Model

    Full text link
    We study the influence of on-site disorder on the magnetic properties of the ground state of the infinite U 1D Hubbard model. We find that the ground state is not ferromagnetic. This is analyzed in terms of the algebraic structure of the spin dependence of the Hamiltonian. A simple explanation is derived for the 1/N periodicity in the persistent current for this model.Comment: 3 pages, no figure

    Charge fluctuations and boundary conditions of biological ion channels:effect on the ionic transition rate

    Get PDF
    A self-consistent solution is derived for the Poisson-Nernst-Planck (PNP) equation, valid both inside a biological ion channel and in the adjacent bulk fluid. An iterative procedure is used to match the two solutions together at the channel mouth. Charge fluctuations at the mouth are modeled as shot noise flipping the height of the potential barrier at the selectivity site. The resultant estimates of the conductivity of the ion channel are in good agreement with Gramicidin experimental measurements and they reproduce the observed current saturation with increasing concentration

    Preliminary study of advanced turboprop and turboshaft engines for light aircraft

    Get PDF
    The effects of engine configuration, advanced component technology, compressor pressure ratio and turbine rotor-inlet temperature on such figures of merit as vehicle gross weight, mission fuel, aircraft acquisition cost, operating, cost and life cycle cost are determined for three fixed- and two rotary-wing aircraft. Compared with a current production turboprop, an advanced technology (1988) engine results in a 23 percent decrease in specific fuel consumption. Depending on the figure of merit and the mission, turbine engine cost reductions required to achieve aircraft cost parity with a current spark ignition reciprocating (SIR) engine vary from 0 to 60 percent and from 6 to 74 percent with a hypothetical advanced SIR engine. Compared with a hypothetical turboshaft using currently available technology (1978), an advanced technology (1988) engine installed in a light twin-engine helicopter results in a 16 percent reduction in mission fuel and about 11 percent in most of the other figures of merit
    corecore