219 research outputs found

    Noise and thermal stability of vibrating micro-gyrometers preamplifiers

    Get PDF
    The preamplifier is a critical component of gyrometer's electronics. Indeed the resolution of the sensor is limited by its signal to noise ratio, and the gyrometer's thermal stability is limited by its gain drift. In this paper, five different kinds of preamplifiers are presented and compared. Finally, the design of an integrated preamplifier is shown in order to increase the gain stability while reducing its noise and size.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/EDA-Publishing

    PetaQCD : En Route for the automatic code generation for lattice QCD

    Get PDF
    International audienceNew computer architectures with various weak and strong characteristics appear with increasing speed. We present our work in progress for the tool-chain aimed at rapid prototyping of the novel dirac matrix inversion algorithms for emerging architectures. From scientific description of the algorithm on the front end to the several back ends we discuss how symbolic manipulation may be used to create and optimize lattice calculations on the fly

    Transcription-coupled eviction of histones H2A/H2B governs V(D)J recombination.

    Get PDF
    Initiation of V(D)J recombination critically relies on the formation of an accessible chromatin structure at recombination signal sequences (RSSs) but how this accessibility is generated is poorly understood. Immunoglobulin light-chain loci normally undergo recombination in pre-B cells. We show here that equipping (earlier) pro-B cells with the increased pre-B-cell levels of just one transcription factor, IRF4, triggers the entire cascade of events leading to premature light-chain recombination. We then used this finding to dissect the critical events that generate RSS accessibility and show that the chromatin modifications previously associated with recombination are insufficient. Instead, we establish that non-coding transcription triggers IgL RSS accessibility and find that the accessibility is transient. Transcription transiently evicts H2A/H2B dimers, releasing 35-40 bp of nucleosomal DNA, and we demonstrate that H2A/H2B loss can explain the RSS accessibility observed in vivo. We therefore propose that the transcription-mediated eviction of H2A/H2B dimers is an important mechanism that makes RSSs accessible for the initiation of recombination

    Modulation of enhancer looping and differential gene targeting by Epstein-Barr virus transcription factors directs cellular reprogramming

    Get PDF
    Epstein-Barr virus (EBV) epigenetically reprogrammes B-lymphocytes to drive immortalization and facilitate viral persistence. Host-cell transcription is perturbed principally through the actions of EBV EBNA 2, 3A, 3B and 3C, with cellular genes deregulated by specific combinations of these EBNAs through unknown mechanisms. Comparing human genome binding by these viral transcription factors, we discovered that 25% of binding sites were shared by EBNA 2 and the EBNA 3s and were located predominantly in enhancers. Moreover, 80% of potential EBNA 3A, 3B or 3C target genes were also targeted by EBNA 2, implicating extensive interplay between EBNA 2 and 3 proteins in cellular reprogramming. Investigating shared enhancer sites neighbouring two new targets (WEE1 and CTBP2) we discovered that EBNA 3 proteins repress transcription by modulating enhancer-promoter loop formation to establish repressive chromatin hubs or prevent assembly of active hubs. Re-ChIP analysis revealed that EBNA 2 and 3 proteins do not bind simultaneously at shared sites but compete for binding thereby modulating enhancer-promoter interactions. At an EBNA 3-only intergenic enhancer site between ADAM28 and ADAMDEC1 EBNA 3C was also able to independently direct epigenetic repression of both genes through enhancer-promoter looping. Significantly, studying shared or unique EBNA 3 binding sites at WEE1, CTBP2, ITGAL (LFA-1 alpha chain), BCL2L11 (Bim) and the ADAMs, we also discovered that different sets of EBNA 3 proteins bind regulatory elements in a gene and cell-type specific manner. Binding profiles correlated with the effects of individual EBNA 3 proteins on the expression of these genes, providing a molecular basis for the targeting of different sets of cellular genes by the EBNA 3s. Our results therefore highlight the influence of the genomic and cellular context in determining the specificity of gene deregulation by EBV and provide a paradigm for host-cell reprogramming through modulation of enhancer-promoter interactions by viral transcription factors

    Cloud Coverage Acts as an Amplifier for Ecological Light Pollution in Urban Ecosystems

    Get PDF
    The diurnal cycle of light and dark is one of the strongest environmental factors for life on Earth. Many species in both terrestrial and aquatic ecosystems use the level of ambient light to regulate their metabolism, growth, and behavior. The sky glow caused by artificial lighting from urban areas disrupts this natural cycle, and has been shown to impact the behavior of organisms, even many kilometers away from the light sources. It could be hypothesized that factors that increase the luminance of the sky amplify the degree of this “ecological light pollution”. We show that cloud coverage dramatically amplifies the sky luminance, by a factor of 10.1 for one location inside of Berlin and by a factor of 2.8 at 32 km from the city center. We also show that inside of the city overcast nights are brighter than clear rural moonlit nights, by a factor of 4.1. These results have important implications for choronobiological and chronoecological studies in urban areas, where this amplification effect has previously not been considered

    An Outer Membrane Receptor of Neisseria meningitidis Involved in Zinc Acquisition with Vaccine Potential

    Get PDF
    Since the concentration of free iron in the human host is low, efficient iron-acquisition mechanisms constitute important virulence factors for pathogenic bacteria. In Gram-negative bacteria, TonB-dependent outer membrane receptors are implicated in iron acquisition. It is far less clear how other metals that are also scarce in the human host are transported across the bacterial outer membrane. With the aim of identifying novel vaccine candidates, we characterized in this study a hitherto unknown receptor in Neisseria meningitidis. We demonstrate that this receptor, designated ZnuD, is produced under zinc limitation and that it is involved in the uptake of zinc. Upon immunization of mice, it was capable of inducing bactericidal antibodies and we could detect ZnuD-specific antibodies in human convalescent patient sera. ZnuD is highly conserved among N. meningitidis isolates and homologues of the protein are found in many other Gram-negative pathogens, particularly in those residing in the respiratory tract. We conclude that ZnuD constitutes a promising candidate for the development of a vaccine against meningococcal disease for which no effective universal vaccine is available. Furthermore, the results suggest that receptor-mediated zinc uptake represents a novel virulence mechanism that is particularly important for bacterial survival in the respiratory tract

    A Genome-Wide Association Study Identifies Novel Alleles Associated with Hair Color and Skin Pigmentation

    Get PDF
    We conducted a multi-stage genome-wide association study of natural hair color in more than 10,000 men and women of European ancestry from the United States and Australia. An initial analysis of 528,173 single nucleotide polymorphisms (SNPs) genotyped on 2,287 women identified IRF4 and SLC24A4 as loci highly associated with hair color, along with three other regions encompassing known pigmentation genes. We confirmed these associations in 7,028 individuals from three additional studies. Across these four studies, SLC24A4 rs12896399 and IRF4 rs12203592 showed strong associations with hair color, with p = 6.0×10−62 and p = 7.46×10−127, respectively. The IRF4 SNP was also associated with skin color (p = 6.2×10−14), eye color (p = 6.1×10−13), and skin tanning response to sunlight (p = 3.9×10−89). A multivariable analysis pooling data from the initial GWAS and an additional 1,440 individuals suggested that the association between rs12203592 and hair color was independent of rs1540771, a SNP between the IRF4 and EXOC2 genes previously found to be associated with hair color. After adjustment for rs12203592, the association between rs1540771 and hair color was not significant (p = 0.52). One variant in the MATP gene was associated with hair color. A variant in the HERC2 gene upstream of the OCA2 gene showed the strongest and independent association with hair color compared with other SNPs in this region, including three previously reported SNPs. The signals detected in a region around the MC1R gene were explained by MC1R red hair color alleles. Our results suggest that the IRF4 and SLC24A4 loci are associated with human hair color and skin pigmentation

    Modulation of a protein free-energy landscape by circular permutation

    Get PDF
    Circular permutations usually retain the native structure and function of a protein while inevitably perturb its folding dynamics. By using simulations with a structure-based model and a rigorous methodology to determine free-energy surfaces from trajectories we evaluate the effect of a circular permutation on the free-energy landscape of the protein T4 lysozyme. We observe changes which, while subtle, largely affect the cooperativity between the two subdomains. Such a change in cooperativity has been previously experimentally observed and recently also characterized using single molecule optical tweezers and the Crooks relation. The free-energy landscapes show that both the wild type and circular permutant have an on-pathway intermediate, previously experimentally characterized, where one of the subdomains is completely formed. The landscapes, however, differ in the position of the rate-limiting step for folding, which occurs before the intermediate in the wild-type and after in the circular permutant. This shift of transition state explains the observed change in the cooperativity. The underlying free-energy landscape thus provides a microscopic description of the folding dynamics and the connection between circular permutation and the loss of cooperativity experimentally observed
    corecore