1,257 research outputs found
Baryon stopping and strange baryon/antibaryon production at SPS energies
The amount of proton stopping in central Pb+Pb collisions from 20-160 AGeV as
well as hyperon and antihyperon rapidity distributions are calculated within
the UrQMD model in comparison to experimental data at 40, 80 and 160 AGeV taken
recently from the NA49 collaboration. Furthermore, the amount of baryon
stopping at 160 AGeV for Pb+Pb collisions is studied as a function of
centrality in comparison to the NA49 data. We find that the strange baryon
yield is reasonably described for central collisions, however, the rapidity
distributions are somewhat more narrow than the data. Moreover, the
experimental antihyperon rapidity distributions at 40, 80 and 160 AGeV are
underestimated by up to factors of 3 - depending on the annihilation cross
section employed - which might be addressed to missing multi-meson fusion
channels in the UrQMD model.Comment: 18 pages, including 7 eps figures, to be published in Phys. Rev.
Anomalous quantum confined Stark effects in stacked InAs/GaAs self-assembled quantum dots
Vertically stacked and coupled InAs/GaAs self-assembled quantum dots (SADs)
are predicted to exhibit a strong non-parabolic dependence of the interband
transition energy on the electric field, which is not encountered in single SAD
structures nor in other types of quantum structures. Our study based on an
eight-band strain-dependent Hamiltonian indicates that
this anomalous quantum confined Stark effect is caused by the three-dimensional
strain field distribution which influences drastically the hole states in the
stacked SAD structures.Comment: 4 pages, 4 figure
Marine latitude/altitude OH distributions: Comparison of Pacific Ocean observations with models
Reported here are tropical/subtropical Pacific basin OH observational data presented in a latitude/altitude geographical grid. They cover two seasons of the year (spring and fall) that reflect the timing of NASA's PEM-Tropics A (1996) and B (1999) field programs. Two different OH sensors were used to collect these data, and each instrument was mounted on a different aircraft platform (i.e., NASA's P-3B and DC-8). Collectively, these chemical snapshots of the central Pacific have revealed several interesting trends. Only modest decreases (factors of 2 to 3) were found in the levels of OH with increasing altitude (0-12 km). Similarly, only modest variations were found (factors of 1.5 to 3.5) when the data were examined as a function of latitude (30° N to 30° S). Using simultaneously recorded data for CO, O3, H2O, NO, and NMHCs, comparisons with current models were also carried out. For three out of four data subsets, the results revealed a high level of correspondence. On average, the box model results agreed with the observations within a factor of 1.5. The comparison with the three-dimensional model results was found to be only slightly worse. Overall, these results suggest that current model mechanisms capture the major photochemical processes controlling OH quite well and thus provide a reasonably good representation of OH levels for tropical marine environments. They also indicate that the two OH sensors employed during the PEM-Tropics B study generally saw similar OH levels when sampling a similar tropical marine environment. However, a modest altitude bias appears to exist between these instruments. More rigorous instrument intercomparison activity would therefore seem to be justified. Further comparisons of model predictions with observations are also recommended for nontropical marine environments as well as those involving highly elevated levels of reactive non-methane hydrocarbons. Copyright 2001 by the American Geophysical Union
Ozone depletion events observed in the high latitude surface layer during the TOPSE aircraft program
During the Tropospheric Ozone Production about the Spring Equinox (TOPSE) aircraft program, ozone depletion events (ODEs) in the high latitude surface layer were investigated using lidar and in situ instruments. Flight legs of 100 km or longer distance were flown 32 times at 30 m altitude over a variety of regions north of 58° between early February and late May 2000. ODEs were found on each flight over the Arctic Ocean but their occurrence was rare at more southern latitudes. However, large area events with depletion to over 2 km altitude in one case were found as far south as Baffin Bay and Hudson Bay and as late as 22 May. There is good evidence that these more southern events did not form in situ but were the result of export of ozone-depleted air from the surface layer of the Arctic Ocean. Surprisingly, relatively intact transport of ODEs occurred over distances of 900â2000 km and in some cases over rough terrain. Accumulation of constituents in the frozen surface over the dark winter period cannot be a strong prerequisite of ozone depletion since latitudes south of the Arctic Ocean would also experience a long dark period. Some process unique to the Arctic Ocean surface or its coastal regions remains unidentified for the release of ozone-depleting halogens. There was no correspondence between coarse surface features such as solid ice/snow, open leads, or polynyas with the occurrence of or intensity of ozone depletion over the Arctic or subarctic regions. Depletion events also occurred in the absence of long-range transport of relatively fresh âpollutionâ within the high latitude surface layer, at least in spring 2000. Direct measurements of halogen radicals were not made. However, the flights do provide detailed information on the vertical structure of the surface layer and, during the constant 30 m altitude legs, measurements of a variety of constituents including hydroxyl and peroxy radicals. A summary of the behavior of these constituents is made. The measurements were consistent with a source of formaldehyde from the snow/ice surface. Median NOx in the surface layer was 15 pptv or less, suggesting that surface emissions were substantially converted to reservoir constituents by 30 m altitude and that ozone production rates were small (0.15â1.5 ppbv/d) at this altitude. Peroxyacetylnitrate (PAN) was by far the major constituent of NOy in the surface layer independent of the ozone mixing ratio
The spin-orbit interaction as a source of new spectral and transport properties in quasi-one-dimensional systems
We present an exact theoretical study of the effect of the spin-orbit (SO)
interaction on the band structure and low temperature transport in long
quasi-one-dimensional electron systems patterned in two-dimensional electron
gases in zero and weak magnetic fields. We reveal the manifestations of the SO
interaction which cannot in principle be observed in higher dimensional
systems.Comment: 5 pages including 5 figures; RevTeX; to appear in Phys.Rev.B (Rapid
Communications
Cistadenocarcinoma papilĂfero de epidĂdimo: relato de caso e revisĂŁo da literatura
Frente a extrema raridade de se encontrar carcinomas no epidĂdimo, bem como a importĂąncia clĂnico-patolĂłgica do seu reconhecimento para o prognĂłstico e a terapĂȘutica adequados, apresentamos um caso de cistadenocarcinoma papilĂfero de epidĂdimo, alĂ©m de revisĂŁo da literatura a respeito. Paciente de 39 anos com aumento de volume da bolsa escrotal Ă direita hĂĄ 8 anos indolor, submetido Ă orquidoepididimectomia total ipsilateral, que revelou achados morfolĂłgicos e imunohistoquĂmicos caracterĂsticos de a um cistadenocarcinoma papilĂfero de epidĂdimo do tipo epitĂ©lio ovariano
A New Family of Covariate-Adjusted Response Adaptive Designs and their Asymptotic Properties
It is often important to incorporating covariate information in the design of
clinical trials. In literature, there are many designs of using stratification
and covariate-adaptive randomization to balance on certain known covariate.
Recently Zhang, Hu, Cheung and Chan (2007) have proposed a family of
covariate-adjusted response-adaptive (CARA) designs and studied their
asymptotic properties. However, these CARA designs often have high
variabilities. In this paper, we propose a new family of covariate-adjusted
response-adaptive (CARA) designs. We show that the new designs have smaller
variabilities and therefore more efficient
Recommended from our members
Steady state free radical budgets and ozone photochemistry during TOPSE
A steady state model, constrained by a number of measured quantities, was used to derive peroxy radical levels for the conditions of the Tropospheric Ozone Production about the Spring Equinox (TOPSE) campaign. The analysis is made using data collected aboard the NCAR/NSF C-130 aircraft from February through May 2000 at latitudes from 40° to 85°N, and at altitudes from the surface to 7.6 km. HO2 + RO2 radical concentrations were measured during the experiment, which are compared with model results over the domain of the study showing good agreement on the average. Average measurement/model ratios are 1.04 (Ï = 0.73) and 0.96 (Ï = 0.52) for the MLB and HLB, respectively. Budgets of total peroxy radical levels as well as of individual free radical members were constructed, which reveal interesting differences compared to studies at lower latitudes. The midlatitude part of the study region is a significant net source of ozone, while the high latitudes constitute a small net sink leading to the hypothesis that transport from the middle latitudes can explain the observed increase in ozone in the high latitudes. Radical reservoir species concentrations are modeled and compared with the observations. For most conditions, the model does a good job of reproducing the formaldehyde observations, but the peroxide observations are significantly less than steady state for this study. Photostationary state (PSS) derived total peroxy radical levels and NO/NO2ratios are compared with the measurements and the model; PSS-derived results are higher than observations or the steady state model at low NO concentrations
Using a New Odour-Baited Device to Explore Options for Luring and Killing Outdoor-Biting Malaria Vectors: A Report on Design and Field Evaluation of the Mosquito Landing Box.
Mosquitoes that bite people outdoors can sustain malaria transmission even where effective indoor interventions such as bednets or indoor residual spraying are already widely used. Outdoor tools may therefore complement current indoor measures and improve control. We developed and evaluated a prototype mosquito control device, the 'Mosquito Landing Box' (MLB), which is baited with human odours and treated with mosquitocidal agents. The findings are used to explore technical options and challenges relevant to luring and killing outdoor-biting malaria vectors in endemic settings. Field experiments were conducted in Tanzania to assess if wild host-seeking mosquitoes 1) visited the MLBs, 2) stayed long or left shortly after arrival at the device, 3) visited the devices at times when humans were also outdoors, and 4) could be killed by contaminants applied on the devices. Odours suctioned from volunteer-occupied tents were also evaluated as a potential low-cost bait, by comparing baited and unbaited MLBs. There were significantly more Anopheles arabiensis, An. funestus, Culex and Mansonia mosquitoes visiting baited MLB than unbaited controls (P<=0.028). Increasing sampling frequency from every 120 min to 60 and 30 min led to an increase in vector catches of up to 3.6 fold (P<=0.002), indicating that many mosquitoes visited the device but left shortly afterwards. Outdoor host-seeking activity of malaria vectors peaked between 7:30 and 10:30pm, and between 4:30 and 6:00am, matching durations when locals were also outdoors. Maximum mortality of mosquitoes visiting MLBs sprayed or painted with formulations of candidate mosquitocidal agent (pirimiphos-methyl) was 51%. Odours from volunteer occupied tents attracted significantly more mosquitoes to MLBs than controls (P<0.001). While odour-baited devices such as the MLBs clearly have potential against outdoor-biting mosquitoes in communities where LLINs are used, candidate contaminants must be those that are effective at ultra-low doses even after short contact periods, since important vector species such as An. arabiensis make only brief visits to such devices. Natural human odours suctioned from occupied dwellings could constitute affordable sources of attractants to supplement odour baits for the devices. The killing agents used should be environmentally safe, long lasting, and have different modes of action (other than pyrethroids as used on LLINs), to curb the risk of physiological insecticide resistance
- âŠ