14 research outputs found

    Progressive multifocal leukoencephalopathy genetic risk variants for pharmacovigilance of immunosuppressant therapies

    Get PDF
    BackgroundProgressive multifocal leukoencephalopathy (PML) is a rare and often lethal brain disorder caused by the common, typically benign polyomavirus 2, also known as JC virus (JCV). In a small percentage of immunosuppressed individuals, JCV is reactivated and infects the brain, causing devastating neurological defects. A wide range of immunosuppressed groups can develop PML, such as patients with: HIV/AIDS, hematological malignancies (e.g., leukemias, lymphomas, and multiple myeloma), autoimmune disorders (e.g., psoriasis, rheumatoid arthritis, and systemic lupus erythematosus), and organ transplants. In some patients, iatrogenic (i.e., drug-induced) PML occurs as a serious adverse event from exposure to immunosuppressant therapies used to treat their disease (e.g., hematological malignancies and multiple sclerosis). While JCV infection and immunosuppression are necessary, they are not sufficient to cause PML.MethodsWe hypothesized that patients may also have a genetic susceptibility from the presence of rare deleterious genetic variants in immune-relevant genes (e.g., those that cause inborn errors of immunity). In our prior genetic study of 184 PML cases, we discovered 19 candidate PML risk variants. In the current study of another 152 cases, we validated 4 of 19 variants in both population controls (gnomAD 3.1) and matched controls (JCV+ multiple sclerosis patients on a PML-linked drug ≥ 2 years).ResultsThe four variants, found in immune system genes with strong biological links, are: C8B, 1-57409459-C-A, rs139498867; LY9 (alias SLAMF3), 1-160769595-AG-A, rs763811636; FCN2, 9-137779251-G-A, rs76267164; STXBP2, 19-7712287-G-C, rs35490401. Carriers of any one of these variants are shown to be at high risk of PML when drug-exposed PML cases are compared to drug-exposed matched controls: P value = 3.50E-06, OR = 8.7 [3.7–20.6]. Measures of clinical validity and utility compare favorably to other genetic risk tests, such as BRCA1 and BRCA2 screening for breast cancer risk and HLA-B*15:02 pharmacogenetic screening for pharmacovigilance of carbamazepine to prevent Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis.ConclusionFor the first time, a PML genetic risk test can be implemented for screening patients taking or considering treatment with a PML-linked drug in order to decrease the incidence of PML and enable safer use of highly effective therapies used to treat their underlying disease

    Representative Germline CNVs in Mice Identified by High-Resolution aCGH

    No full text
    <div><p>The log<sub>2</sub> ratios of signal intensity for C57BL/6J (reference) versus 20 test strains are shown. Inset, an expanded view of the CNVs in NOD/LtJ and A/J from (A) and (B). Scale, 500 kb.</p><p>(A) A 135.6-kb segment of reduced copy number (mean log<sub>2</sub> = −1.02) on Chromosome 14 is present in most strains.</p><p>(B) A 61.7-kb amplified segment (mean log<sub>2</sub> = +1.01) on Chromosome 1 is present in most strains.</p></div

    Validation of Copy Number Changes Identified by aCGH

    No full text
    <div><p>(A) Log<sub>2</sub> ratio plot demonstrates a 109.2-kb segment of copy number loss on Chromosome 6 in C57L/J, compared to C57BL/6J.</p><p>(B) qPCR using a primer/probe set in the altered region demonstrates normal copy number (normalized to a relative copy number of one in C57BL/6J) in unaffected strains and significantly reduced copy number in four affected strains (inset, zoom-in view of <i>y</i>-axis).</p><p>(C) qPCR fails to generate an amplicon of expected size in the altered region from affected strains. B6, C57BL/6J reference strain.</p><p>(D) Log<sub>2</sub> ratio plot demonstrates a 473.7-kb segment of copy number gain on Chromosome 17 in BALB/cByJ compared to C57BL/6J.</p><p>(E) qPCR demonstrates heterogeneity of copy number (normalized to a relative copy number of one in C57BL/6J) in this region among 20 strains.</p><p>(F) Copy number estimates from aCGH and qPCR are highly concordant (<i>p</i> < 0.0001).</p></div
    corecore