23 research outputs found

    Challenges for developing national climate services – Poland and Norway

    Get PDF
    This contribution discusses the challenges for developing national climate services in two countries with high fossil fuel production – Poland (coal) and Norway (oil and gas). Both countries, Poland and Norway, have highly developed weather services, but largely differ on climate services. Since empirical and dynamical downscaling of climate models started in Norway over 20 years ago and meteorological and hydrological institutions in Oslo and Bergen have been collaborating on tailoring and disseminating downscaled climate projections to the Norwegian society, climate services are now well developed in Norway. The Norwegian Centre for Climate Services (NCCS) was established in 2011. In contrast, climate services in Poland, in the international understanding, do not exist. Actually, Poland is not an exception, as compared to other Central and Eastern European countries, many of which neither have their national climate services, nor are really interested in European climate services disseminated via common EU initiatives. It is worth posing a question – can Poland learn from Norway as regards climate services? This contribution is based on results of the CHASE-PL (Climate change impact assessment for selected sectors in Poland) project, carried out in the framework of the Polish – Norwegian Research Programme. The information generated within the Polish-Norwegian CHASE-PL project that is being broadly disseminated in Poland can be considered as a substitute for information delivered in other countries by climate services

    Air temperature variations and gradients along the coast and fjords of western Spitsbergen

    Get PDF
    Daily temperature measurements from six meteorological stations along the coast and fjords of western Spitsbergen have been digitized and quality controlled in a Norwegian, Russian and Polish collaboration. Complete daily data series have been reconstructed back to 1948 for all of the stations. One of the station’s monthly temperature series has previously been extended back to 1898 and is included in this study. The long-term series show large temperature variability on western Spitsbergen with colder periods in the 1910s and 1960s and warmer periods in the 1930s, 1950s and in the 21st century. The most recent years are the warmest ones in the instrumental records. There is a positive and statistically significant trend in the annual times series for all of the stations; however, the strongest warming is seen in winter and spring. For the period 1979-2015, the linear trends range from 1.0 to 1.38°C/decade for the annual series and from 2.0 to 2.38°C/decade in winter. Threshold statistics demonstrate a decrease in the number of cold days per year and an increase in the number of warm days. A decreasing inter-annual variability is observed. In winter, spring and autumn, the stations in the northernmost areas of west Spitsbergen and in the innermost parts of Isfjorden are the coldest ones. In summer, however, the southernmost station is the coldest one

    Past and future climate variations in the Norwegian Arctic: overview and novel analyses

    No full text
    Sparse stations and serious measuring problems hamper analyses of climatic conditions in the Arctic. This paper presents a discussion of measuring problems in the Arctic and gives an overview of observed past and projected future climate variations in Svalbard and Jan Mayen. Novel analyses of temperature conditions during precipitation and trends in fractions of solid/liquid precipitation at the Arctic weather stations are also outlined. Analyses based on combined and homogenized series from the regular weather stations in the region indicate that the measured annual precipitation has increased by more than 2.5% per decade since the measurements started in the beginning of the 20th century. The annual temperature has increased in Svalbard and Jan Mayen during the latest decades, but the present level is still lower than in the 1930s. Downscaled scenarios for Svalbard Airport indicate a further increase in temperature and precipitation. Analyses based on observations of precipitation types at the regular weather stations demonstrate that the annual fraction of solid precipitation has decreased at all stations during the latest decades. The reduced fraction of solid precipitation implies that the undercatch of the precipitation gauges is reduced. Consequently, part of the observed increase in the annual precipitation is fictitious and is due to a larger part of the “true” precipitation being caught by the gauges. With continued warming in the region, this virtual increase will be measured in addition to an eventual real increase

    Estimating extreme areal precipitation in Norway from a gridded dataset

    No full text
    To obtain estimates of extreme areal precipitation in Norway, the Norwegian Meteorological Institute currently applies a statistical method that combines measured point precipitation, empirical growth factors, and areal reduction factors. We here suggest performing statistical analysis directly on areal 24-h precipitation from a gridded dataset covering the period from 1957 to the present. Grid-based methods provide increased objectivity and consistency, and enable estimation in ungauged catchments. The proposed method fits the generalized extreme value (GEV) distribution to areal precipitation series in order to estimate precipitation return levels required for design values for flooding and dam safety. The study includes an investigation of the spatial variation of extreme precipitation in Norway, as reflected by the GEV shape parameter. Our results suggest that this parameter varies spatially according to the dominating precipitation systems and, most probably, to the degree of orographic enhancement

    The shrinking resource base of pastoralism: Saami reindeer husbandry in a climate of change

    No full text
    The productive performance of large ungulates in extensive pastoral grazing systems is modulated simultaneously by the effects of climate change and human intervention independent of climate change. The latter includes the expansion of private, civil and military activity and infrastructure and the erosion of land rights. We used Saami reindeer husbandry in Norway as a model in which to examine trends in, and to compare the influence of, both effects on a pastoral grazing system. Downscaled projections of mean annual temperature over the principal winter pasture area (Finnmarksvidda) closely matched empirical observations across 34 years to 2018. The area, therefore, is not only warming but seems likely to continue to do so. Warming notwithstanding, 50-year (1969–2018) records of local weather (temperature, precipitation and characteristics of the snowpack) demonstrate considerable annual and decadal variation which also seems likely to continue and alternately to amplify and to counter net warming. Warming, moreover, has both positive and negative effects on ecosystem services that influence reindeer. The effects of climate change on reindeer pastoralism are evidently neither temporally nor spatially uniform, nor indeed is the role of climate change as a driver of change in pastoralism even clear. The effects of human intervention on the system, by contrast, are clear and largely negative. Gradual liberalization of grazing rights from the 18th Century has been countered by extensive loss of reindeer pasture. Access to ~50% of traditional winter pasture was lost in the 19th Century owing to the closure of international borders to the passage of herders and their reindeer. Subsequent to this the area of undisturbed pasture within Norway has decreased by 71%. Loss of pasture due to piecemeal development of infrastructure and to administrative encroachment that erodes herders' freedom of action on the land that remains to them, are the principal threats to reindeer husbandry in Norway today. These tangible effects far exceed the putative effects of current climate change on the system. The situation confronting Saami reindeer pastoralism is not unique: loss of pasture and administrative, economic, legal and social constraints bedevil extensive pastoral grazing systems across the globe
    corecore