105 research outputs found
The MobyDick Project: A Mobile Heterogeneous All-IP Architecture
Proceedings of Advanced Technologies, Applications and Market Strategies for 3G (ATAMS 2001). Cracow, Poland: 17-20 June, 2001.This paper presents the current stage of an IP-based architecture for heterogeneous environments, covering UMTS-like W-CDMA wireless access technology, wireless and wired LANs, that is being developed under the aegis of the IST Moby Dick project. This architecture treats all transmission capabilities as basic physical and data-link layers, and attempts to replace all higher-level tasks by IP-based strategies.
The proposed architecture incorporates aspects of mobile-IPv6, fast handover, AAA-control, and Quality of Service. The architecture allows for an optimised control on the radio link layer resources. The Moby dick architecture is currently under refinement for implementation on field trials. The services planned for trials are data transfer and voice-over-IP.Publicad
Tropical surface singularities
In this paper, we study tropicalisations of singular surfaces in toric
threefolds. We completely classify singular tropical surfaces of
maximal-dimensional type, show that they can generically have only finitely
many singular points, and describe all possible locations of singular points.
More precisely, we show that singular points must be either vertices, or
generalized midpoints and baricenters of certain faces of singular tropical
surfaces, and, in some cases, there may be additional metric restrictions to
faces of singular tropical surfaces.Comment: A gap in the classification was closed. 37 pages, 29 figure
Partner orbits and action differences on compact factors of the hyperbolic plane. Part I: Sieber-Richter pairs
Physicists have argued that periodic orbit bunching leads to universal
spectral fluctuations for chaotic quantum systems. To establish a more detailed
mathematical understanding of this fact, it is first necessary to look more
closely at the classical side of the problem and determine orbit pairs
consisting of orbits which have similar actions. In this paper we specialize to
the geodesic flow on compact factors of the hyperbolic plane as a classical
chaotic system. We prove the existence of a periodic partner orbit for a given
periodic orbit which has a small-angle self-crossing in configuration space
which is a `2-encounter'; such configurations are called `Sieber-Richter pairs'
in the physics literature. Furthermore, we derive an estimate for the action
difference of the partners. In the second part of this paper [13], an inductive
argument is provided to deal with higher-order encounters.Comment: to appear on Nonlinearit
Almost Sure Frequency Independence of the Dimension of the Spectrum of Sturmian Hamiltonians
We consider the spectrum of discrete Schr\"odinger operators with Sturmian
potentials and show that for sufficiently large coupling, its Hausdorff
dimension and its upper box counting dimension are the same for Lebesgue almost
every value of the frequency.Comment: 12 pages, to appear in Commun. Math. Phy
Rational approximation and arithmetic progressions
A reasonably complete theory of the approximation of an irrational by
rational fractions whose numerators and denominators lie in prescribed
arithmetic progressions is developed in this paper. Results are both, on the
one hand, from a metrical and a non-metrical point of view and, on the other
hand, from an asymptotic and also a uniform point of view. The principal
novelty is a Khintchine type theorem for uniform approximation in this context.
Some applications of this theory are also discussed
The subconvexity problem for \GL_{2}
Generalizing and unifying prior results, we solve the subconvexity problem
for the -functions of \GL_{1} and \GL_{2} automorphic representations
over a fixed number field, uniformly in all aspects. A novel feature of the
present method is the softness of our arguments; this is largely due to a
consistent use of canonically normalized period relations, such as those
supplied by the work of Waldspurger and Ichino--Ikeda.Comment: Almost final version to appear in Publ. Math IHES. References
updated
Ultrametric Logarithm Laws, II
We prove positive characteristic versions of the logarithm laws of Sullivan
and Kleinbock-Margulis and obtain related results in Metric Diophantine
Approximation.Comment: submitted to Montasefte Fur Mathemati
The Hausdorff and dynamical dimensions of self-affine sponges : a dimension gap result
We construct a self-affine sponge in R 3 whose dynamical dimension, i.e. the supremum of the Hausdorff dimensions of its invariant measures, is strictly less than its Hausdorff dimension. This resolves a long-standing open problem in the dimension theory of dynamical systems, namely whether every expanding repeller has an ergodic invariant measure of full Hausdorff dimension. More generally we compute the Hausdorff and dynamical dimensions of a large class of self-affine sponges, a problem that previous techniques could only solve in two dimensions. The Hausdorff and dynamical dimensions depend continuously on the iterated function system defining the sponge, implying that sponges with a dimension gap represent a nonempty open subset of the parameter space
- âŠ