4 research outputs found

    Ni-Mn-Ga films in the austenite and the martensite structures at room temperature: Uniaxial texturation and epitaxial growth

    Full text link
    Ni-Mn-Ga films in the austenite and the martensite structures at room temperature have been obtained using the DC magnetron sputtering technique. Two elaboration processes were studied. A first batch of samples was deposited using a resist sacrificial layer in order to release the film from the substrate before vacuum annealing. This process leads to polycrystalline films with a strong (022) fiber texture. The martensitic phase transformation of such polycrystalline freestanding films has been studied by optical and scanning electron microscopy. A second batch of samples was grown epitaxially on (100)MgO substrates using different deposition temperatures. The texture has been analyzed with four-circle X-ray diffraction. Epitaxial films crystallized both in the austenite and the martensite structures at room temperature have been studied

    Elaboration par plasma froid basse pression de revêtements polymères protecteurs de fibres organiques et inorganiques

    No full text
    L’allègement des structures combinée a l’augmentation de leurs propriétés mécaniques et électriques est un des axes d’innovation dans le domaine des composites à hautes performances. Certains de ces matériaux emplois des matrices organiques à renforts carbones. Une voie de recherche privilégiée est l’utilisation et l’intégration de nanomatériaux aux composites. Ainsi des nanotubes de carbone sont greffés à la surface des fibres de carbone, créant une fibre hybride. Pendant le processus industriel subi par la fibre, des nanotubes sont susceptibles d’être relâchés et de provoquer la dégradation des propriétés de la fibre. La dimension nanométrique de ces particules les rend plus performant que les matériaux conventionnels mais constitue un risque potentiel pour la santé de l’être humain. Pour conserver les nanotubes sur la fibre, un revêtement polymérique protecteur est ajouté à la fibre hybride. Dans le cadre de cette thèse, ce revêtement est déposé par polymérisation plasma sous vide d’un monomère. Les monomères d’acide acrylique et d’acétylène agissent avec les paramètres de dépôt sur l’interface entre les fibres et la matrice, et donc sur les propriétés mécaniques du composite. L’évolution de cette interface est caractérisée par l’énergie de surface du dépôt sur substrats modèles puis sur fibre hybride. Les revêtements issus des deux monomères assurent la protection des nanotubes, améliorent l’interface entre la fibre et la matrice, tout en conservant le gain de conduction apporte par le greffage des nanotubes. L’addition d’une étape de traitement plasma non polymérisable, avant ou après le dépôt du polymère, peut améliorer les propriétés interfaciales par rapport aux fibres hybrides.Innovation areas in high performance composite are based on structure lightening combined with mechanical and electrical enhancement. Carbon reinforced organic matrix is widely used for composite applications. Nanomaterial’s incorporation appears among the ways of improvement. In this study, carbon nanotubes are grafted on carbon fibers’ surface to create a hybrid fiber. However, handling hybrid fibers may lead releasing CNT, weakening fiber properties and unwilling health risk. A protective layer is then required for properties saving and for safety purpose. In our work, a coating is deposited by low pressure plasma polymerization of organic monomer: acrylic acid or acetylene. Monomer deposit parameters influence cohesion at the interface between fiber and matrix by means of physical and chemical interactions. We show from results observed at microscal that macro mechanical properties of the final composite are also modified. Coating is characterized by means of surface energy calculation on model substrate. It allows choosing coating properties and plasma treatment conditions to be applied to hybrid fibers. A protective coating is obtained from the two monomers on nanotubes and increases mechanical properties at the fiber/matrix interface. The deposit does not spoil electrical conductivity of hybrid fiber. Addition of pre or post plasma treatment before or after coating may improve in some case mechanical properties of composite within the interface between protected hybrid fiber and matrix compared to uncoated one

    Elaboration par plasma froid basse pression de revêtements polymères protecteurs de fibres organiques et inorganiques

    No full text
    L allègement des structures combinée a l augmentation de leurs propriétés mécaniques et électriques est un des axes d innovation dans le domaine des composites à hautes performances. Certains de ces matériaux emplois des matrices organiques à renforts carbones. Une voie de recherche privilégiée est l utilisation et l intégration de nanomatériaux aux composites. Ainsi des nanotubes de carbone sont greffés à la surface des fibres de carbone, créant une fibre hybride. Pendant le processus industriel subi par la fibre, des nanotubes sont susceptibles d être relâchés et de provoquer la dégradation des propriétés de la fibre. La dimension nanométrique de ces particules les rend plus performant que les matériaux conventionnels mais constitue un risque potentiel pour la santé de l être humain. Pour conserver les nanotubes sur la fibre, un revêtement polymérique protecteur est ajouté à la fibre hybride. Dans le cadre de cette thèse, ce revêtement est déposé par polymérisation plasma sous vide d un monomère. Les monomères d acide acrylique et d acétylène agissent avec les paramètres de dépôt sur l interface entre les fibres et la matrice, et donc sur les propriétés mécaniques du composite. L évolution de cette interface est caractérisée par l énergie de surface du dépôt sur substrats modèles puis sur fibre hybride. Les revêtements issus des deux monomères assurent la protection des nanotubes, améliorent l interface entre la fibre et la matrice, tout en conservant le gain de conduction apporte par le greffage des nanotubes. L addition d une étape de traitement plasma non polymérisable, avant ou après le dépôt du polymère, peut améliorer les propriétés interfaciales par rapport aux fibres hybrides.Innovation areas in high performance composite are based on structure lightening combined with mechanical and electrical enhancement. Carbon reinforced organic matrix is widely used for composite applications. Nanomaterial s incorporation appears among the ways of improvement. In this study, carbon nanotubes are grafted on carbon fibers surface to create a hybrid fiber. However, handling hybrid fibers may lead releasing CNT, weakening fiber properties and unwilling health risk. A protective layer is then required for properties saving and for safety purpose. In our work, a coating is deposited by low pressure plasma polymerization of organic monomer: acrylic acid or acetylene. Monomer deposit parameters influence cohesion at the interface between fiber and matrix by means of physical and chemical interactions. We show from results observed at microscal that macro mechanical properties of the final composite are also modified. Coating is characterized by means of surface energy calculation on model substrate. It allows choosing coating properties and plasma treatment conditions to be applied to hybrid fibers. A protective coating is obtained from the two monomers on nanotubes and increases mechanical properties at the fiber/matrix interface. The deposit does not spoil electrical conductivity of hybrid fiber. Addition of pre or post plasma treatment before or after coating may improve in some case mechanical properties of composite within the interface between protected hybrid fiber and matrix compared to uncoated one.CHATENAY MALABRY-Ecole centrale (920192301) / SudocSudocFranceF

    Plasma polymerized thin coating as a protective layer of carbon nanotubes grafted on carbon fibers

    No full text
    International audienceNanoparticles addition is widely studied to improve properties of carbon fiber reinforced composites. Here, hybrid carbon fiber results from grafting of carbon nanotubes (CNT) by Chemical Vapor Deposition (CVD) on the carbon fiber for mechanical reinforcement and conductive properties. Both tows and woven fabrics made of the hybrid fibers are added to the matrix for composite processing. However handling hybrid fibers may induce unwilling health risk due to eventual CNT release and a protective layer is required. A thin coating layer is deposited homogeneously by low pressure plasma polymerization of an organic monomer without modifying the morphology and the organization of grafted CNTs. The polymeric layer effect on the electrical behavior of hybrid fiber is assessed by conductivity measurements. Its influence on the mechanical properties is also studied regarding the interface adhesion between fiber and matrix. The protective role of layer is demonstrated by means of friction constraints applied to the hybrid fiber
    corecore