113 research outputs found
Reporters for the analysis of N-glycosylation in Candida albicans
Copyright Β© 2013 The Authors. Published by Elsevier Inc. All rights reserved.Peer reviewedPublisher PD
Solid-phase translation and RNAβprotein fusion: a novel approach for folding quality control and direct immobilization of proteins using anchored mRNA
A novel cell-free translation system is described in which template-mRNA molecules were captured onto solid surfaces to simultaneously synthesize and immobilize proteins in a more native-state form. This technology comprises a novel solid-phase approach to cell-free translation and RNAβprotein fusion techniques. A newly constructed biotinylated linker-DNA which enables puromycin-assisted RNAβprotein fusion is ligated to the 3β² ends of the mRNA molecules to attach the mRNA-template on a streptavidin-coated surface and further to enable the subsequent reactions of translation and RNAβprotein fusion on surface. The protein products are therefore directly immobilized onto solid surfaces and furthermore were discovered to adopt a more native state with proper protein folding and superior biological activity compared with conventional liquid-phase approaches. We further validate this approach via the production of immobilized green fluorescent protein (GFP) on microbeads and by the production and assay of aldehyde reductase (ALR) enzyme with 4-fold or more activity. The approach developed in this study may enable to embrace the concept of the transformation of βRNA chip-to-protein chipβ using a solid-phase cell-free translation system and thus to the development of high-throughput microarray platform in the field of functional genomics and in vitro evolution
Taking down the FLAG! How Insect Cell Expression Challenges an Established Tag-System
In 1988 the preceding journal of Nature Biotechnology, Bio/Technology, reported a work by Hopp and co-workers about a new tag system for the identification and purification of recombinant proteins: the FLAG-tag. Beside the extensively used hexa-his tag system the FLAG-tag has gained broad popularity due to its small size, its high solubility, the presence of an internal Enterokinase cleavage site, and the commercial availability of high-affinity anti-FLAG antibodies. Surprisingly, considering the heavy use of FLAG in numerous laboratories world-wide, we identified in insect cells a post-translational modification (PTM) that abolishes the FLAG-anti-FLAG interaction rendering this tag system ineffectual for secreted proteins. The present publication shows that the tyrosine that is part of the crucial FLAG epitope DYK is highly susceptible to sulfation, a PTM catalysed by the enzyme family of Tyrosylprotein-Sulfo-transferases (TPSTs). We showed that this modification can result in less than 20% of secreted FLAG-tagged protein being accessible for purification questioning the universal applicability of this established tag system
Bacterial expression of human kynurenine 3-monooxygenase:Solubility, activity, purification
AbstractKynurenine 3-monooxygenase (KMO) is an enzyme central to the kynurenine pathway of tryptophan metabolism. KMO has been implicated as a therapeutic target in several disease states, including Huntingtonβs disease. Recombinant human KMO protein production is challenging due to the presence of transmembrane domains, which localise KMO to the outer mitochondrial membrane and render KMO insoluble in many in vitro expression systems. Efficient bacterial expression of human KMO would accelerate drug development of KMO inhibitors but until now this has not been achieved. Here we report the first successful bacterial (Escherichia coli) expression of active FLAGβ’-tagged human KMO enzyme expressed in the soluble fraction and progress towards its purification
A Biobrick Library for Cloning Custom Eukaryotic Plasmids
Researchers often require customised variations of plasmids that are not commercially available. Here we demonstrate the applicability and versatility of standard synthetic biological parts (biobricks) to build custom plasmids. For this purpose we have built a collection of 52 parts that include multiple cloning sites (MCS) and common protein tags, protein reporters and selection markers, amongst others. Importantly, most of the parts are designed in a format to allow fusions that maintain the reading frame. We illustrate the collection by building several model contructs, including concatemers of protein binding-site motifs, and a variety of plasmids for eukaryotic stable cloning and chromosomal insertion. For example, in 3 biobrick iterations, we make a cerulean-reporter plasmid for cloning fluorescent protein fusions. Furthermore, we use the collection to implement a recombinase-mediated DNA insertion (RMDI), allowing chromosomal site-directed exchange of genes. By making one recipient stable cell line, many standardised cell lines can subsequently be generated, by fluorescent fusion-gene exchange. We propose that this biobrick collection may be distributed peer-to-peer as a stand-alone library, in addition to its distribution through the Registry of Standard Biological Parts (http://partsregistry.org/)
Pooled extracellular receptor-ligand interaction screening using CRISPR activation.
Extracellular interactions between cell surface receptors are necessary for signaling and adhesion but identifying them remains technically challenging. We describe a cell-based genome-wide approach employing CRISPR activation to identify receptors for a defined ligand. We show receptors for high-affinity antibodies and low-affinity ligands can be unambiguously identified when used in pools or as individual binding probes. We apply this technique to identify ligands for the adhesion G-protein-coupled receptors and show that the Nogo myelin-associated inhibitory proteins are ligands for ADGRB1. This method will enable extracellular receptor-ligand identification on a genome-wide scale
A Generic System for the Expression and Purification of Soluble and Stable Influenza Neuraminidase
The influenza surface glycoprotein neuraminidase (NA) is essential for the efficient spread of the virus. Antiviral drugs such as Tamiflu (oseltamivir) and Relenza (zanamivir) that inhibit NA enzyme activity have been shown to be effective in the treatment of influenza infections. The recent βswine fluβ pandemic and world-wide emergence of Tamiflu-resistant seasonal human influenza A(H1N1) H274Y have highlighted the need for the ongoing development of new anti-virals, efficient production of vaccine proteins and novel diagnostic tools. Each of these goals could benefit from the production of large quantities of highly pure and stable NA. This publication describes a generic expression system for NAs in a baculovirus Expression Vector System (BEVS) that is capable of expressing milligram amounts of recombinant NA. To construct NAs with increased stability, the natural influenza NA stalk was replaced by two different artificial tetramerization domains that drive the formation of catalytically active NA homotetramers: GCN4-pLI from yeast or the Tetrabrachion tetramerization domain from Staphylothermus marinus. Both recombinant NAs are secreted as FLAG-tagged proteins to allow for rapid and simple purification. The Tetrabrachion-based NA showed good solubility, increased stability and biochemical properties closer to the original viral NA than the GCN4-pLI based construct. The expressed quantities and high quality of the purified recombinant NA suggest that this expression system is capable of producing recombinant NA for a broad range of applications including high-throughput drug screening, protein crystallisation, or vaccine development
An AP-MS- and BioID-compatible MAC-tag enables comprehensive mapping of protein interactions and subcellular localizations
Protein-protein interactions govern almost all cellular functions. These complex networks of stable and transient associations can be mapped by affinity purification mass spectrometry (AP-MS) and complementary proximity-based labeling methods such as BioID. To exploit the advantages of both strategies, we here design and optimize an integrated approach combining AP-MS and BioID in a single construct, which we term MAC-tag. We systematically apply the MAC-tag approach to 18 subcellular and 3 sub-organelle localization markers, generating a molecular context database, which can be used to define a protein's molecular location. In addition, we show that combining the AP-MS and BioID results makes it possible to obtain interaction distances within a protein complex. Taken together, our integrated strategy enables the comprehensive mapping of the physical and functional interactions of proteins, defining their molecular context and improving our understanding of the cellular interactome.Peer reviewe
Evolutionary Descent of Prion Genes from the ZIP Family of Metal Ion Transporters
In the more than twenty years since its discovery, both the phylogenetic origin and cellular function of the prion protein (PrP) have remained enigmatic. Insights into a possible function of PrP may be obtained through the characterization of its molecular neighborhood in cells. Quantitative interactome data demonstrated the spatial proximity of two metal ion transporters of the ZIP family, ZIP6 and ZIP10, to mammalian prion proteins in vivo. A subsequent bioinformatic analysis revealed the unexpected presence of a PrP-like amino acid sequence within the N-terminal, extracellular domain of a distinct sub-branch of the ZIP protein family that includes ZIP5, ZIP6 and ZIP10. Additional structural threading and orthologous sequence alignment analyses argued that the prion gene family is phylogenetically derived from a ZIP-like ancestral molecule. The level of sequence homology and the presence of prion protein genes in most chordate species place the split from the ZIP-like ancestor gene at the base of the chordate lineage. This relationship explains structural and functional features found within mammalian prion proteins as elements of an ancient involvement in the transmembrane transport of divalent cations. The phylogenetic and spatial connection to ZIP proteins is expected to open new avenues of research to elucidate the biology of the prion protein in health and disease
Interactome Analyses Identify Ties of PrPC and Its Mammalian Paralogs to Oligomannosidic N-Glycans and Endoplasmic Reticulum-Derived Chaperones
The physiological environment which hosts the conformational conversion of the cellular prion protein (PrPC) to disease-associated isoforms has remained enigmatic. A quantitative investigation of the PrPC interactome was conducted in a cell culture model permissive to prion replication. To facilitate recognition of relevant interactors, the study was extended to Doppel (Prnd) and Shadoo (Sprn), two mammalian PrPC paralogs. Interestingly, this work not only established a similar physiological environment for the three prion protein family members in neuroblastoma cells, but also suggested direct interactions amongst them. Furthermore, multiple interactions between PrPC and the neural cell adhesion molecule, the laminin receptor precursor, Na/K ATPases and protein disulfide isomerases (PDI) were confirmed, thereby reconciling previously separate findings. Subsequent validation experiments established that interactions of PrPC with PDIs may extend beyond the endoplasmic reticulum and may play a hitherto unrecognized role in the accumulation of PrPSc. A simple hypothesis is presented which accounts for the majority of interactions observed in uninfected cells and suggests that PrPC organizes its molecular environment on account of its ability to bind to adhesion molecules harboring immunoglobulin-like domains, which in turn recognize oligomannose-bearing membrane proteins
- β¦