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An AP-MS- and BiolD-compatible MAC-tag
enables comprehensive mapping of protein
interactions and subcellular localizations
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Protein-protein interactions govern almost all cellular functions. These complex networks of
stable and transient associations can be mapped by affinity purification mass spectrometry
(AP-MS) and complementary proximity-based labeling methods such as BiolD. To exploit the
advantages of both strategies, we here design and optimize an integrated approach com-
bining AP-MS and BiolD in a single construct, which we term MAC-tag. We systematically
apply the MAC-tag approach to 18 subcellular and 3 sub-organelle localization markers,
generating a molecular context database, which can be used to define a protein’s molecular
location. In addition, we show that combining the AP-MS and BiolD results makes it possible
to obtain interaction distances within a protein complex. Taken together, our integrated
strategy enables the comprehensive mapping of the physical and functional interactions of
proteins, defining their molecular context and improving our understanding of the cellular
interactome.
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ajority of proteins do not function in isolation and their

interactions with other proteins define their cellular

functions. Therefore, detailed understanding of
protein-protein interactions (PPIs) is the key for deciphering
regulation of cellular networks and pathways. During the last
decade, the versatile combination of affinity purification and mass
spectrometry (AP-MS) revolutionized the detailed characteriza-
tion of protein complexes and protein-interaction networks!. The
AP-MS approach relies on expression of a bait protein coupled
with an epitope tag or antibodies targeting the endogenous bait
protein, allowing purification of the bait protein together with the
associating proteins (preys). This approach has been proven well
suited for even large-scale high-throughput studies, and to yield
highly reproducible data in both intra- and inter-laboratory
usage?. The most commonly used epitope tags in medium to
large-scale studies include FLAG®, His%, MYC®, HA®, GFP” and
Strep®, of which the Strep-tag has become the gold-standard in
affinity purification proteomics due to unparalleled protein purity
in physiological purification conditions as well as the possibility
for native competitive elution using biotin.

AP-MS can also be combined with quantitative proteomics
approaches to better understand the protein complex stoichio-
metry’ and the dynamics of protein—complex (dis)assembly’17,
The combination of AP-MS with other techniques, such as bio-
chemical fractionation, intact mass measurement and chemical
crosslinking! 12, has been used to characterize supramolecular
organization of protein complexes.

Although AP-MS remains the most used method for mapping
protein-protein interactions, the recently developed proximity
labeling approaches, such as BioID'? and APEX'4, have become
complementary and somewhat competing methods. BiolD
involves expression of the protein of interest fused with a pro-
karyotic biotin ligase (BirA) and the subsequent biotinylation of
the amine groups of the neighboring proteins when excess of
biotin is added to the cells. Whereas the wild-type BirA from E.
Coli is capable of transferring the biotin only to a substrate
bearing a specific recognition sequence, the generation of a pro-
miscuous BirA* (Argl18Gly mutant) allows the biotinylation of
any protein found within a 10 nm labeling radius'®!°. While
BioID has the abilities to capture weak and/or transient protein-
protein interactions, the identified interactions are not limited to
direct binders but can include proximate proteins as well.

In order to avoid artefactual interactions caused by over-
expression of the bait proteins, majority of the large-scale inter-
action proteomic studies employ the Flp-In T-REx 293 cell line
allowing moderate and inducible bait protein expression from
isogenic cell clones'®. Although the system allows rapid genera-
tion of transgene stably expressing cell lines, comprehensive
analyses utilizing complementarily both AP-MS and BioID is
resource-intense in the respect of construct and cell line gen-
eration. To address this caveat and allow high-throughput com-
prehensive interactome analyses, we generated a Gateway®-
compatible MAC (Multiple Approaches Combined) -tag enabling
both the single-step Strep AP-MS as well as the BioID analysis
with a single construct and with single affinity reagent, which
decreases the number of required individual cell lines by 50% and
should improve the data reproducibility, respectively. In addition
to allow visualization of tagged bait protein by immunohis-
tochemistry, we included as well a nine amino acid hemagglutinin
(HA)-epitope. The HA epitope also facilitates additional follow-
up approaches such as ChIP-Seq!” and purification of the
crosslinked proteins for cross-linking coupled with mass spec-
trometry (XL-MS)'®, making the MAC-tag almost as versatile as
the Swiss Army knife.

To benchmark the usability and performance of the MAC-tag
we applied it to 18 bona fide subcellular localization marker
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proteins. This allows us to validate the correct localization of the
MAC-tagged marker proteins as well as to monitor the localiza-
tion of the in vivo biotinylated interactors. These interactions also
provide information about the cellular functions of the 18 marker
proteins. Furthermore, the 18 localization markers and their 1911
interactions form a reference molecular context repository, which
can be used for ‘mass spectrometry (MS) microscopy’ analysis of
a protein of interest. Moreover, the combined analysis with AP-
MS and BiolD allows deriving relative spatial distances for pro-
teins within a complex. Taken together, the MAC-tag and cor-
responding analysis approaches provide a plethora of information
on the cellular functions and the molecular context of proteins.

Results

Development of MAC-tag based AP-MS and BiolD pipelines.
To generate a versatile approach for identification of both stable
physical and transient functional protein-protein interactions we
integrated and optimized the BioID approach with our single-step
Strep AP-MS pipeline!®!°. Both of these approaches have become
the method of choice for interactomics analyses. We have recently
shown the effectiveness of using these approached compli-
mentarily'®!°, However, the complementary use of the two
techniques has been labor-intense, involving tagging of the bait
proteins with BirA* and Strep-tag individually, as well as gen-
eration of two set of cell lines per bait. To overcome the major
limitations, we have developed an integrated experimental
workflow utilizing a MAC-tag containing both StrepIII-tag and
BirA* (Supplementary Fig. la). In addition to optimizing the
experimental steps, we focused on the compatibility of the two
methods and to the simplicity of the analysis pipelines to generate
a process with improved performance and reproducibility on
detecting protein-protein interactions. In contrast to coupling
BirA* with epitope tags such as Myc!? or FLAG?, the two MAC-
tag pipelines differ only in the activation of the BirA* by addition
of biotin to the cell culture media and harsher lysis condition in
the BioID pipeline (Fig. 1 and Supplementary Fig. 1a, b). Without
biotin addition the BirA* in the MAC-tag is inactive (Supple-
mentary Fig. 1b, ¢), resulting in identical (cor = 0.88-0.99) single-
step affinity purification results as vector with only StrepIII-tag
(Supplementary Fig. 1d, e). Similarly, when biotin was added the
results compare (cor = 0.95-0.97) to that of a vector with BirA*
(Supplementary Fig. 1d, e and Supplementary Data 1d).

The developed integrated approach significantly enhances
(> two-fold) the throughput of generating bait-expressing cell
lines, facilitates a comprehensive analysis of protein-protein
interactions utilizing both the BioID and AP-MS, and allows
analysis of protein complexes and even transient functional
interaction networks with high sensitivity and reproducibility.
Additionally, the MAC-tag allows visualization of the bait protein
with anti-HA antibody detecting the HA epitope. This versatility
of our approach was expected to give detailed view on the bait
protein formed complexes, interactions, and actual molecular
context via the detected stable, transient and/or proximal
interactions.

MAC-tagged cellular localization markers localize correctly.
We then went on and evaluated the MAC-tag system with 18
bona fide cellular localization markers (Supplementary Data 1la)
that cover most of cellular organelles to have more comprehen-
sive view of the application of our integrated multiple approach
system. Initially 18 localization markers were cloned to the MAC-
tag vector, and as a first step we explored their localization using
fluorescence microscopy. The tagged-localization markers were
visualized with anti-HA antibody and the in vivo biotinylated
interactors with Alexa Fluor 594 streptavidin (Fig. 2). These
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Fig. 1 MAC-tag-based workflow for identification of protein complexes and interactions. Gateway compatible MAC-tag destination vectors containing
Streplll, HA and BirA* were designed to allow the gene of interest either C-terminal or N-terminal tagging. The expression vector can then be transfected
into Flp-In T-REx 293 to establish the transgenic stably and inducible expressing isogenic cell lines. For the AP-MS and BiolD analysis approaches, the cell
line is separated into two cultures, BiolD cells receiving addition of 50 pM biotin in their culture medium. In the following protein extraction process,
optimized lysis and affinity purification conditions for both analysis approaches were used. The interacting proteins were then analyzed by quantitative
mass spectrometry and high-confidence interaction proteins (HCIPs) were inferred via stringent statistical filtering. This integrated workflow allows
laborless generation of cellular material for analyses, and results in integrated view of the formed protein complexes, protein-protein interactions and

detailed molecular context definition

subcellular markers included: mitochondria (Apoptosis-inducing
factor 1, AIFMI); endoplasmic reticulum (Calnexin, CALX);
peroxisome (Catalase, CATA); early endosome (Early endosome
antigen 1, EEAL); cytoplasmic peripheral plasma membrane
marker (Ezrin, EZRI); nucleolus marker (rRNA 2’-O-methyl-
transferase fibrillarin, FBRL); cis-Golgi marker (Golgin subfamily
A member 2, GOGA2); chromatin (Histone H3.1, H31); exosome
(Heat shock cognate 71 kDa protein, HSP7C); lysosome (Lyso-
some-associated membrane glycoprotein 1, LAMPI); nuclear
envelope marker (Prelamin-A/C, LMNA); proteasome (Protea-
some subunit alpha type-1, PSAL); recycling endosome (Ras-
related protein Rab-11A, RAB11A); late endosome (Ras-related
protein Rab-9A, RAB9A); microtubule (Tubulin alpha-1A chain,
TBA1A); centrosome (Tubulin gamma-1 chain, TBG1); trans-
Golgi (trans-Golgi network integral membrane protein 2,
TGON?2); and ribosome (40S ribosomal protein S6, RS6) (Sup-
plementary Data 1a). All of the 18 MAC-tagged marker proteins
localized to their corresponding well documented cellular com-
partments, illustrating that the MAC-tag or the activation of the
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BirA* does not change the correct localization of these proteins.
We also verified this for several of the used marker proteins (11/
11 tested) using specific antibodies against the corresponding
endogenous protein (Supplementary Fig. 2 and Supplementary
Data 1a). Furthermore, the localization of the in vivo biotinylated
interactors correlates well with that of the corresponding locali-
zation marker (Fig. 2). In addition to verifying the correct loca-
lization of marker proteins, the results highlight the usability of
our MAC-tag constructs for fluorescence microscopy on detect-
ing both the tagged protein of interest as well as the interacting
proteins.

Identifying the interactions of the localization markers.
Although many proteins and proteins families have been exten-
sively studied with wide-range of cell biological or biochemical
methods, others and we have shown the AP-MS and BioID can
reveal wealth of new molecular and functional informa-
tion'%20:21, However, for many proteins not much is known and
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Fig. 2 Fluorescence microscopy analysis of the cellular localization markers. The 18 subcellular localization markers fused with MAC-tag were visualized by
immunofluorescence staining using Alexa Fluor 488 labeled anti-HA immunostaining (green), their in vivo biotinylated interactors with Alexa Fluor

594 streptavidin (red), and cell nuclei with DAPI (blue) (Scale bar: 10 pm)

there has not been systematic methods to efficiently and com-
prehensively characterize them. As shown in Fig. 2, the resolution
of standard fluorescence microscopy does not allow capturing
information of the protein dynamic localization and molecular
context. Therefore, we MAC-tagged 18 known cellular localiza-
tion markers and subjected them to our integrated method to
obtain detailed molecular context proteome map with

4 | 2018)9:1188

information from both the physical and functional interactions
formed by these proteins. The analysis resulted in 26527 inter-
actions from BioID and 9390 from AP-MS, of which 2118 high-
confidence interactions (HCIs) from BioIlD and 679 interactions
from AP-MS were retained after using stringent statistical filter-
ing (Fig. 3a, b and Supplementary Data 1c). The identified
average connectivity (38) of the 18 localization markers, identified
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using AP-MS, matches well with the published large-scale stu-
dies'®22. As the BioID is also able to capture highly transient and
close-proximity interactions, the total number of identified
interactors as well as interactions per bait is higher than that of
AP-MS (Fig. 3a, b). This is seen for example with Rab9A and
Rab11A, two regulators of endosomal transport, for which BioIlD
provides 16 times and 11 times more high-confidence interacting
proteins (HCIPs) than AP-MS, respectively (Supplementary

Fig. 3). In this case, the proteins detected solely with BioID likely
represent cargo proteins in endosomal transit. Interestingly the
ratio of newly identified vs. known interactions in total is almost
two-fold higher with BioID (11.3) than with AP-MS (6.8),
potentially reflecting the sensitivity of BioID to identify more
transient and proximal interactions (Fig. 3a).

However, the complementary nature of these two methods is
illustrated by their overlap as well as with their individually
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detected interactions, such as the ones formed by proteosomal
marker PSA1%3 and nuclear envelope marker LMNA (Fig. 3¢, d).
With PSA1 the overlap of AP-MS (green edges) and BioID
(yellow edges) identified interactions is 17 components of the 20S
core proteasome complex involved in the proteolytic degradation
of most intracellular proteins (Fig. 3¢ and Supplementary
Data 1c). BioID also captures myosins (MYH10 and MYH14)
and unconventional myosins (MYO1B-D and -6), which have
high turnover rates and after use they are either refolded for reuse
or degraded by the proteasome??. Additionally, BioID identifies
proteasome activator complex subunits 1 (PSME1l) and 2
(PSME2), which are part of the 11S (PA28)
immunoproteasome?’.,

LMNA is a component of the nuclear lamina, playing an
important role in nuclear assembly, chromatin organization,
and framework for the nuclear envelope and telomere
dynamics. Not surprisingly both the AP-MS and BioID identify
interactions with lamin-B (LMNB)1, LMNB2, lamin-B receptor
(LBR), lamina-associated polypeptide (LAP)2A and LAP2B,
inner nuclear membrane protein Manl (MAN1), and emerin
(EMD). Another group of interacting proteins are nuclear pore
complexes (NPCs) components: nuclear envelope pore mem-
brane protein POM (P121A, P121C), Nuclear pore complex
protein Nup (NU) 107, NU133, NUI153, NU155, NU160,
NUP50, NUP85, NUP98, NUP37, NUP43, nucleoporin SEH1,
nucleoprotein TPR, ELYS and SEC13, of which only compo-
nents of the nuclear basket NUP50, TPR, SEC13 are detected of
low abundance with AP-MS (Fig. 3d, and Supplementary
Data 1c). This suggests that for the correct localization to the
nucleoplasmic side of the nuclear envelope, LMNA needs to
pass through nuclear pore and during this process it transiently
interacts and in vivo biotinylates the NPCs components.
Similarly, the importin transport proteins importin subunit
alpha (IMA1, IMA3, IMA4, IMAS5, IMA6 and IMA7), importin
subunit beta-1(IMB1) are detected with BioID, but only IMA5
and IMA7 in AP-MS. In addition, several histone modifiers and
chromatin remodelers are detected (AN32E, EDF1, MYSM1
and PARP1). Somewhat surprisingly our analysis also identifies
several proteins involved in cell cycle and mitosis (RAD50,
ARF, KI67, HDGR2, WRIP1, AKP8L, BCCIP and P53).

Both of the examples show that the detected high-confidence
interacting proteins are highly specific for the studied location,
as illustrated by the retrieval of the HCIPs localization
information from CellWhere database?® (Fig. 3c, d). The
proteins with the highest ranking for the particular location
from CellWhere are shown in dark green and for the rest of the
ranks the node color is light green. Proteins with no CellWhere
ranking are shown in gray (Fig. 3c,d and Supplementary Fig. 3).

Molecular context map reveals organelle-specific profiles. In
addition to lacking molecular level resolution, standard fluores-
cence microscopy is often used to produce static images

representing the particular time point when the image is taken.
However, cellular proteins are highly diverse in their spatio-
temporal properties, thus making their characterization with
microscopy alone extremely challenging. The BioID, in principle,
overcomes these limitations as monitoring of the biotinylated
close-proximity proteins and their quantities should allow
defining the BirA* -tagged bait proteins detailed molecular con-
text within certain time period (Supplementary Fig. 3). Using the
2118 high-confidence interactions from BiolD, we generated a
cellular compartment-specific protein interaction map to the 18
bona fide localization markers (Fig. 3e and Supplementary
Data 1c). The HCIPs domains as well as the gene ontology (GO)
term profiles for each marker were unique (Supplementary
Data 2a-f and Supplementary Figs 4, 5). However, we identified
also shared HCIs between the endomembrane system consisting
of ER (CALX), the Golgi (GOGA2 and TGON2), endosomes
(EEA1, RAB9A and RAB11A) and lysosome (LAMP1). The four
organelles shared 17 interactors, and the combination of any
three locations shared in total 87 interactions (Supplementary
Fig. 6a). These four organelles are involving in two major intra-
cellular trafficking pathways: The exocytic pathway (ER via Golgi
(53 shared interactions) to the plasma membrane); and the
endocytic pathway (plasma membrane via endosomes to (1)
Golgi (101 interactions) and (2) lysosome (61 interaction) to ER
(86 interactions)). This organization is also well visible with,
within a cell, the physically farthest from each other locating
endosome and ER, sharing the least interactions of the all possible
binary combinations of the four locations.

Similarly, chromatin, nucleolus and nuclear envelope are all
sub-structures in the nucleus and shared interactors with each
other (Supplementary Fig. 6b); nuclear envelope (LMNA) 22
with chromatin (H31) and chromatin 31 with nucleolus
(FBRL). We previously already discussed the role of nuclear
envelope on chromatin organization, and chromatin control the
structure of nucleolus via ribosome DNA. Nucleolus is the place
where ribosomal RNA transcription and the ribosome assembly
occur. Ribosome (RS6) was detected as an outlier as it shared
many of the interactors with other localization markers. This is
explained by the fact that protein translation requires
ribosomes, which are after the synthesis of the MAC-tagged
protein immediately in vivo biotinylated in the BioID approach.
Therefore the ribosome (RS6) was excluded from the further
analyses. However, the other localization markers, such as
mitochondria (AIFM1), cytoplasmic peripheral plasma mem-
brane (EZRI), exosome (HSP7C), peroxisome (CATA), micro-
tubule (TBA1A), proteasome (PSA1) and centrosome (TBG1)
had highly unique molecular context signature, which suggest
the usability of this reference set in tracking of protein of
interests dynamic localization in intracellular environment.
Additionally comparison of the HCIPs cellular locations from
CellWhere database showed them to be assigned to the correct
cellular localization according to their bait protein, further

Fig. 3 Generation of comprehensive interactome maps for the bona fide cellular markers. The 18 localization markers we subjected to our integrated
analysis, resulting in identification of 679 HCls from the AP-MS and 2118 HCls from BiolD analysis. a The distribution of the number of known (blue) and
newly identified (red) interactions within 18 bona fide subcellular organelle/structure markers, illustrate the need for systematic analyses. b The
distribution of the number of interactions per localization marker by AP-MS or BiolD purification approach shows similar distribution of connectivity as
other publications using these approaches individually. Boxplots show the median, the 25th and 75th percentile, Tukey whiskers (median = 1.5IQR). ¢, d The
protein-protein interaction network and molecular context for proteasome organelle marker (PSA1) and nuclear envelope (LMNA). The HCls that were
identified from AP-MS (green line) and BiolD (yellow line) are shown together with the known prey-prey interactions (dashed gray line). The nodes are
color-coded based on the localization rank obtained from the CellWhere database (key: dark green = primary cellular localization for the corresponding
protein, light green = possible localization, gray = different or no localization assigned for the protein). The Venn diagram highlights the complementary
nature of the AP-MS and BiolD approaches. e The reference molecular context map for the 18 subcellular organelles/structures. The unique high-
confidence interactors from the BiolD analysis are arranged in a circle around the corresponding localization marker and the shared interactors are shown
with corresponding colors representing multiple localizations. Preys with more than four subcellular localizations are shown in gray color. The newly
identified interactions are shown in pink edges and the known interactions with blue
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Fig. 4 Molecular level localization mapping using the reference molecular context maps. a The schematic overview of the MS microscopy approach to
assess the queried protein localization using our reference interaction context. b The polar plot shows the location of query protein observed by MS
microscopy. Each sector represents one subcellular location defined by our reference database. The color assigned to each of the localization is based on
the annotation frequency (Pink: 0-0.5; Yellow: 0.5-0.75; Green: 0.75-1). ¢, d The PPl network obtained from BiolD and AP-MS are shown separately. The
localization of prey proteins was verified by CellWhere database. Node color scheme coordinates the observation localization from Fig. 4b
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reinforcing the idea that proteins that share their interaction
profiles are proximal. Finally, total of 1911 HCIs (excluding RS6
interactions), collapsed to 14 subcellular localizations were
integrated to build up the reference molecular context map
(Fig. 3e). Overlaying of the protein of interests BioID PPIs with
our molecular map should allow defining the dynamic
localization of the protein. In principle, the developed MS
microscopy approach could have high impact on cellular
quantitative biology (Fig. 4a).
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MS microscopy using the molecular context map as a reference.
Despite the biological significance of dynamic subcellular locali-
zations of proteins, simple tools for detecting the relative sub-
cellular distribution have not been extensively developed. To test
the applicability of the MS microscopy on this, we selected
dynamic cytoplasmic signaling molecules aurora kinase B
(AURKB), cyclin-dependent kinase (CDK) 7, CDK8, and glyco-
gen synthase kinase-3 beta (GSK3B), as well as additional mar-
kers for cellular locations ras-related protein Rab-5A (RAB5A)
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Fig. 5 AOX localizes to inner mitochondrial membrane and in the vicinity of complex Il. a The AOX from Ciona Intestinalis, was introduced to human cells
and the MS microscopy assigns the AOX to localize to mitochondria. b The BiolD approach identifies 333 interactions of which 93.1% (310) were
mitochondrial (green), 0.3% (1) was peroxisomal (pink) and 6.6% (22) were unassigned (gray), based on CellWhere database. ¢ Total of 38 of the
interactors were components of the mitochondrial respiratory chain complexes (complex I- V, key: color gradient indicates the percentage of proteins of
the each individual complexes identified). d The average component abundance shows that the AOX associates most with the complex II, which is in
agreement with the AOX suggested functional role. Boxplots show the median, the 25th and 75th percentile, Tukey whiskers (median =1.5IQR) and
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and Golgi vesicular membrane-trafficking protein p18 (BET1)
and applied our approach to them (Fig. 4b-d, Supplementary
Data la-c, and Supplementary Fig. 7). Aurora kinase plays an
important role in cellular division by controlling chromatic seg-
regation, which matches well to its interactions overlaying with
chromatin marker H31 (Fig. 4b-d). Similarly SNARE protein
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BET1, involved in the docking process of ER-derived vesicles with
the cis-Golgi membrane is assigned to Golgi (Fig. 4b-d). Essential
component of the transcription factor II H (TFIIH), CDK7, and
mediator complex associating CDK8 are predominantly asso-
ciating with chromatin (Fig. 4b-d). This finding is in line with
their important role in transcription regulation. Importantly,
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these examples show the high resolution of the MS microscopy
to distinct exact molecular locations, which could not be
resolved by fluorescence microscopy (Supplementary Fig. 7).
Glycogen synthase kinase } (GSK3B) phosphorylates many
substrates in mammalian cells, and functions in many physio-
logical processes, and acts as an important regulator in Wnt and
Hedgehog signaling pathways?’. Somewhat, to our surprise our
MS microscopy showed GSK3B localization to Golgi and exo-
somes. Recent research have demonstrated that a portion of
GSK3B is localized to the trans-Golgi network through per-
ipheral protein p230%® and that cytoplasmic GSK3B relocalizes
to the same endosome as the internalized Wnt ligand®®. It is
plausible that this colocalization of GSK3B continues with
active Wnt through endosomal organelles onto exosomes>C. For
validation of our endosomal location, we choose RAB5A which
is known to localize to early endosomes and is involved in the
recruitment of RAB7A and the maturation of these organelles
to late endosomes®!. In our analysis we can confirm the (early)-
endosomal location as well as detect a fraction of Golgi loca-
lization, which could be related to the fusion of trans-Golgi
network-derived vesicles with the early endosome?2.

Our generated reference molecular context proteome map
could be expected to be applicable with previously published
heterogenous BiolD datasets and even with other cell types. To
test this we selected seven studies'>?!*3-37 using BioID with
heterogeneous protocols and processed the reported interac-
tions against our reference molecular context proteome map.
With this analysis we could show that our approach identified
the correct subcellular localization for 22/25 of the tested
experiments (Supplementary Data 3, http://www.biocenter.
helsinki.fi/bi/protein/msmic/example.pdf),  validating and
further extending the general usability of our MS microscopy
approach. Additionally, we selected two commonly used human
cell lines, the human bone osteosarcoma U-2 OS and the
human prostate cancer DU-145 and generated cell line specific
reference molecular context proteome maps. The 17 used
localization markers in both cell lines align well with their
respective localization, when processed against the Flp-In T-
REx 293 reference molecular context proteome map (Supple-
mentary Fig. 8, 9 and Supplementary Data 1c). We then
compared the BioID results of AURKB, BET1, CDK7, CDKS,
GSK3B and RAB5A from the Flp-In T-REx 293 (Fig. 4c and
Supplementary Data 1c), with the U-2 OS, DU-145 and Flp-In
T-REx 293 generated maps, and the results align extremely well
(Supplementary Fig. 10).

These examples clearly establish the applicability of the MS
microscopy in defining the molecular context of many protein
(s), and also it’s expandability to cover also different cell types
or sub-organelle structures. In addition to analysis of wild-type
proteins our system should be useful for defining possible
altered molecular context in human diseases caused by either
somatic or germline genetic alteration, as well as for example
analyzing functions of transgenic proteins not expressed in
human cells.

Molecular localization of the transgenic alternative oxidase.
Alternative oxidase (AOX) present in many lower eukaryotes, but
not in vertebrates, transfer electrons directly from ubiquinol to
oxygen in a non-proton-motive manner>®, Transgenic expression
of AOX in mammalian systems has been suggested as a ther-
apeutic option for treating mitochondrial disease induced by
OXPHOS dysfunction®, and additionally it has been shown that
even broad expression of AOX does not disturb normal phy-
siology in mice®’. The exact molecular context of AOX in
mitochondria membrane is not currently known, but it is thought
to locate close to complex II based on its alleviating effects after
toxic or pathological inhibition of the mitochondrial respiratory
chain?!. Therefore, we decided to apply our MS microscopy
method to define the molecular context of Ciona intestinalis’
AOX in human cells and possibly shed some light on its inter-
actions with respiratory chain. Our approach identifies AOX
predominantly to localize to mitochondria (Fig. 5a and Supple-
mentary Fig. 7). More specifically, >90% of AOX interactors
(Fig. 5b) belong to mitochondria according to CellWhere data-
base and 48% among them have the GO term annotation of
mitochondria inner membrane. Furthermore, 38 of the inter-
actors are components of the mitochondrial respiratory com-
plexes I-V. From these AOX prefers interactions with complex II
(2/4 components detected), complex I (19/44) and complex V (9/
19) (Fig. 5¢), which is also visible from the quantitative interactor
abundance (Fig. 5d). The detected higher quantitative abundance
of the complex II proteins is in agreement with the immunoe-
lectron microscopy findings of the complex II locating on the
inner mitochondrial membrane®?, whereas the other complexes
(LIILIV and V) would be on the cristae membrane. Therefore,
our MS microscopy findings confirm the functionally suggested
location (IMM, in vicinity of complex II) of transgenic AOX in
human cells.

Sub-organelle level resolution of the MS microscopy. Although
for many studies the mapping of protein localization to 14
compartments is sufficient, in theory the MS microscopy allows
even better resolution. The resolution of MS microscopy is
dependent on the in vivo biotinylation radius (10-50 nm), which
then in principle should allow 5-10-fold higher resolution than
standard confocal microscope. To benchmark the MS microscopy
on sub-organelle analyses, we selected three well-documented
mitochondrial proteins and generated a sub-organelle molecular
context proteome map of the mitochondrion. The mitochondrion
is a double membrane-bound organelle possessing an outer
membrane (OMM), an inner membrane (IMM), and mitochon-
drial matrix within IMM (Fig. 6a). The intermembrane space
(IMS) is 10 ~ 20 nm in diameter, and therefore should allow, for
example, almost complete biotinylation and subsequent identifi-
cation of the proteins in the IMS with MS. The three mito-
chondrial marker proteins; OMM) outer mitochondrial
membrane receptor Tom20 (TOMM20, dark green); IMS) pro-
tein SCO1 homolog (SCOI, light green); and matrix) pyruvate

Fig. 6 Sub-organelle level molecular context map of the mitochondria. a Mitochondrion can be divided to four compartments, namely to the outer
mitochondrial membrane (dark green), inner mitochondrial space (light green), inner mitochondrial membrane (gray) and the mitochondrial matrix
(yellow). b The three mitochondrial proteins, TOM20, SCO1 and PDK1, used for generation of the mitochondrial sub-organelle molecular context map, with
their PPl network obtained from the BiolD (key: the interacting proteins are colored according to their corresponding bait mitochondrial location. Known
(blue), newly identified (red) and prey-prey (black dashed line) interactions are color-coded). € Confocal microscopy analysis fails to provide sub-organelle
level information of mitochondrial protein, whereas MS microscopy allows assigning the proteins within mitochondrial compartments. Confocal
microscopy (HC PL APO 93x/1.30 GLYC motCORR) was applied to observe the mitochondrial localization MAC-tagged mitochondrial proteins. The MAC-
tagged bait proteins are visualized with anti-HA immunostaining (green), nucleus with DAPI (blue), and mitochondria by co-transfection with pDsRed-
Mito vector (red), Scale bar: 10 pm. The MS microscopy analysis and the resulting polar plots assign the mitochondrial proteins to their corresponding
mitochondrial compartments. The color assigned to each sub-organelle location is based on the annotation frequency (green: 0.75-1; yellow: 0.5-0.75;

pink: 0-0.5)
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Fig. 7 Characterization of interaction distances by integration of MAC-tag data. a-c Distance based topology of protein complexes. The AP-MS and BiolD
data was blotted based on the bait normalized prey abundances and the correlated data was used to derive interaction distances for CDK7 and the TFIIH
complex, as well as for CDK8 and MED13 with the Mediator complex. The CDK7 formed CAK-complex components are shown in gray and the Mediator
complex components assigned to the Head (magenta), the Middle (cyan) and the Tail (green) are color-coded. d, e The derived interaction distances for
CDK7, CDK8 and the MED13 are fitted into EM derived complex structures and suggested fitted interaction surface is shown in green dashed line ellipses.
The color-coding in e corresponds with b, c. f Relative distances for bait protein and the other complex components can be calculated. (g, h) The calculated
relative distances (using either PSM or MST1 intensity values) derived from the integrated AP-MS and BiolD data results to extremely high correlation
(Pearson’s and Spearman’s) and p-value as indicated (t-test) for CDK8 and MED13, two neighboring units in the Mediator kinase module
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dehydrogenase kinase isoform 1 (PDK1, yellow)*? were processed
through our BioID pipeline to generate the mitochondrial sub-
organelle map. This resulted in a mitochondrial sub-organelle
reference proteome database consisting of 121 (OMM), 102
(IMS) and 235 (matrix) proteins (Fig. 6b). For testing the gen-
erated mitochondrial reference database, we processed additional
13 mitochondrial proteins with our MS microscopy and defined
their mitochondrial sub-organelle localization. Using a confocal
microscopy we could confirm that all of the proteins are indeed
mitochondrial, however it was impossible to obtain more detailed
sub-organelle localization information. However, using our MS
microscopy we could assign the mitochondrial proteins to the
three mitochondrial sub-compartments. Majority of the mito-
chondrial proteins were localized solely to mitochondria when
using the MS microscopy on the whole cell level mainly, and also
similarly to a single compartment within the mitochondria when
using the MS microscopy on a sub-organelle level (Fig. 6¢). Of the
tested 13 mitochondrial proteins, eight (MRM1, MGST3, PLRKT,
SEXN1, PTH2, COXI14, TR61B and AKIP; Supplementary
Data 1a) had been analyzed previously using APEX*3. Our results
were in good agreement with the seven of these proteins, how-
ever, we also detected COX14 in the IMS, and AKIP in the
‘nucleus’ and ‘chromatin’—location in which AKIP has been
reported to also function*%.

Defining interaction distances within a protein complex.
Others and we have shown that AP-MS offers accurate quanti-
fication of complex composition allowing calculations on com-
plex stoichiometry®!%4>, With BirA* the labeling radius is limited
(circa 10 nm), and it has been used to obtain rough maps of
spatial distribution of proteins within structures by reciprocally
analyzing BirA*-tagged proteins throughout the structure!®. As
the in vivo biotinylation is enzymatic reaction deriving relational
interaction abundances of participants cannot be done. However,
it can be reasoned that the more proximal proteins will be more
efficiently biotinylated and purified in larger abundances than
proteins further away'>#6, On the AP-MS side this would cor-
relate with the likelihood of more abundant interactors being
more direct than low abundant, in which the interaction could be
mediated by other proteins and the interaction with the bait
would be secondary or tertiary etc. Therefore, by blotting both the
BioID and AP-MS data, in theory, we could obtain relative dis-
tance of the MAC-tagged bait protein to its interacting protein in
a complex. For testing this hypothesis, we selected CDK7 and
CDK8 for which we have previously identified successfully
quantitative complex compositionszz.

We applied our dual-approach, and with both AP-MS and
BioID we could detect the CDK?7 interactions with TFIIH core
components (Fig. 7a)47%_ The size of the TFIIH is estimated to
be ~10 nm*’, which is still within the BirA* biotinylation range
and should allow measurement of the CDK?7 interaction distances
for all of the complex components. Before associating with
TFIIH, CDK7 associates and forms cyclin-dependent kinase
(CDK)-activating kinase (CAK) complex with two regulatory
subunits; cyclin H (CCNH) required for CDK?7 activity and with
RING finger protein CDK-activating kinase assembly factor
MAT1 (MAT) which modulates the substrate specificity of the
complex”’. In agreement, both CCNH and MAT1 are detected as
closest to CDK7, followed by ERCC2, ERCC3 and TFIIH1. The
ERCC2, TFIIH basal transcription factor complex helicase XPD
subunit is the bridge linking the CAK module with TFIIH ring-
like core and has been shown to directly interact with TFIIH basal
transcription factor complex helicase XPB subunit (ERCC3)!
and TFIIH1°2. CDK7% also has been reported to directl
interact with TFITH1*® (Fig. 7d and Supplementary Data 1e)>>>%,
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Our results are in line with both hypothesis, the evidence
suggesting that TFIIH1 and ERCC3 have short inter-distances as
well as that they both are close to the CAK module (Fig. 7d, f).
TFIIH2-4 are part of core ring structure of TFIIH complex
located adjacent to CDK7, thus having highly similar distance to
CDK?7 (Fig. 7a, f). Similarly, ERCC5 and TFIIH5 are in longer
distances from CDK?7, suggesting that they are located on the
opposite side of the complex from CAK (Fig. 7a, d, f).

The transcriptional co-activator Mediator complex has more
than 30 subunits and is ~30 nm in size®®, and therefore on the
upper detection limits. The Mediator complex is composed of 4
modules, the head®®>’, the middle®®, the tail®® and the kinase
module®®®!, The evolutionarily conserved and dissociable kinase
module is formed by CDK8 together with cyclin C (CCNC),
mediator of RNA polymerase II transcription subunit mediator
complex subunit (MED) 12 and 13, (Fig. 7€)% To test and
validate the reproducibility of our approach, in addition to CDKS,
we additionally choose MED13 for analysis. Additionally this
would allow more accurate prediction of the kinase-module
docking surface to the Mediator core complex. To our surprise
the overall correlation of CDK8 and MED13 distances from the
Mediator core is extremely high (c=0.95) (Fig. 7b, ¢, g, h and
Supplementary Data le), confirming that these two proteins are
highly proximal. Based on the analysis the closest Mediator
subunits for both CDK8 and MEDI13 are MED12, MEDI4,
MED1, MED24, MED23, MED17, MED15, MED27, MED16 and
MED6/4>. This suggests that the kinase module is docking
horizontal to the MED14 ranging from RM1 and RM2, the two
repeats of a structural domain on MED14.

For additional validation of our approach, we MAC-tagged
three components (ARPC1B, ARP2 and ARP3B) of the 220 kDa
and 7 seven subunit ARP2/3 complex with high-resolution crystal
structure®?. The obtained relative distances of the three MAC-
tagged components to the other components of the ARP2/3
complex are in good agreement with the ARP2/3 structure
(Supplementary Figure 1la-c and Supplementary Data 1f).

The CDK7, CDKS8, MED13, ARP2/3 examples benchmark
another utility of our MAC-tag system and shows that by
integration of AP-MS and BioID it is possible to derive
information on complex structure, interaction distances and
possible distance constraints.

Discussion

In this study, we developed and optimized an integrated workflow
based around MAC-tag, for characterization of the molecular
context of many proteins of interest from human cells. This
workflow features state-of-the-art affinity purification using
Strep-tag to identify and quantify protein-protein interaction and
protein complex stoichiometry; identification of transient or
close-proximity interactions with BioID; visualization of the bait
protein and the proximal interactors with immunofluorescence
microscopy; and defining the molecular context with MS
microscopy utilizing the reference dataset obtained by identifying
proximal interactors for bona fide subcellular localization mar-
kers. Additionally our integrated workflow reduces the generation
of the required cell lines for AP-MS and BiolID to half, and the use
of a single affinity reagent simplifies the combinatorial use of both
AP-MS and BioID approaches. Additionally, the use of a single
affinity reagent facilitates the filtering of the HCIPs (mainly due
to the uniform background from the unspecific binders). Other
advantages of using Strep-Tactin® in AP-MS include the lower
cost and higher binding cagacity of Strep-Tactin® compared to
antibody beads®® (e.g., HA?, Myc!? and FLAG?, as well as the
possibility for native elution with biotin instead of on-bead
digestion. The possibility for native elution also allows the use
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of the purified protein complexes for example on enzymatic
reactions, such as kinase assays®%. In addition as the majority of
interaction proteomics studies (AP-MS and/or BioID/APEX) are
using the biotin-avidin based purification approaches, also the
comparison of the obtained results with other publications is
easier with using only Strep-Tactin®.

In addition to analyzing the physical and functional interac-
tions formed by 18 cellular localization markers, we used our
integrated workflow to map interactions for four kinases
(AURKB, CDK7, CDKS8 and GSK3B), as well as for two addi-
tional localization markers (BET1 and RAB5A). In addition to
identifying 539 interactions for these six proteins, we could
validate the accuracy of the MS microscopy method for identi-
fying correct cellular localization for these proteins. We also
applied the analyses for BioID identified filtered interactions from
7 publications, and derived the cellular localizations for the used
baits. The identified localizations were in good agreement with
the corresponding reported localizations. This illustrates the
general usability of the MS microscopy and the web application,
but also suggests that the MS microscopy would be extendable as
a communal effort to cover the cell even in greater detail. The
cellular signaling state varies between the stimuli, but also with
different cell types. Although our MS microscopy resulted in
highly similar results using data from three different cell lines, the
biological variation and cellular heterogeneity needs to be taken
into consideration with MS microscopy as with any biological
experiment.

Furthermore, we could show with an exogenous protein, AOX
that our MS microscopy identifies AOX to localize to mito-
chondria. Additional analysis shows that AOX localizes to inner
mitochondrial membrane from the mitochondrial matrix side
and is in close-proximity with Complex II. Our findings validate,
the functionally suggested vicinity of AOX with Complex II. We
further extended our analysis on sub-organelle level with mito-
chondria, by addition of three additional markers, TOMM22 for
OMM, SCOL1 for IMS and PDKI1 for the mitochondrial matrix.
Using this sub-organelle reference proteome map, we applied MS
microscopy on 13 mitochondrial proteins and could identify their
sub-organelle locations, whereas the confocal microscopy (93x)
failed to do so.

Identifying the complex components in a stoichiometry fash-
ion has been shown to be possible with affinity purification mass
spectrometry”!?, However, obtaining any further spatial infor-
mation of the complex formation has only been possibly in
combination with XL-MS'8, We could now show with the TFITH
and Mediator complex as model complexes, that by utilizing both
the AP-MS and BiolID approaches we can obtain relative inter-
action distances for proteins in a complex. Based on the inter-
action distances it is possible to obtain an estimate for the
interaction surfaces for proteins or structures, such as with the
kinase submodule of the Mediator complex. We agree that
deriving the interaction distances might only be applicable when
using single affinity reagent (Strep-Tactin®) for both the AP-MS
and BiolD.

In summary, our study showed that the integrated workflow
and the reference molecular context proteome map generated
here, allows an easy way to probe the molecular localization of
protein of interest, and additionally an online resource of our
BioID based MS microscopy approach is available at www.
biocenter.helsinki.fi/bi/protein/msmic. We also showed that it is
also usable for existing BioID datasets and can be expanded (with
additional localizations or cell types) once more data comes
available. The molecular image obtained from the MS microscopy
analysis considers the weights of interactors and provides more
dynamic localization information at the molecular level. The
developed MAC-tag and the integrated approach should
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empower, not only the interaction proteomics community, but
also cell/molecular/structural biologists, with an experimentally
proven integrated workflow for mapping in detail the physical
and functional interactions and the molecular context of proteins
in human cells.

Methods

Generation of MAC-tag Gateway® destination vectors. To generate Gateway
compatible destination vectors, plasmids containing the tags (C-terminal: StrepIIl/
HA/BirA*, N-terminal: BirA*/HA/StreplIl) were synthesized by GeneArt®, Life
Technologies. These were digested with restriction enzymes and inserted into N-
terminal: pcDNAS5/FRT/TO/StrepIIl/HA/GW® or C-terminal: pcDNAS5/FRT/TO/
StrepIIl/HA/GW? in which entire StrepIII/HA tag was removed. All the Gateway
compatible entry clones, which contain subcellular marker gene of interested, were
from Human ORFeome collection. The MAC-tag constructs are made available via
Addgene.org.

Immunofluorescence. HeLa cells (American Type Culture Collection, ATCC,
CCL-2) were transfected with vectors containing MAC-tagged gene of interest and
cultured either with or without supplemental biotin. Bait proteins were detected
with anti-HA antibody (Biolegend, MMS-101R, dilution 1:500), followed by Alexa
Fluor 488-conjugated secondary antibody (Thermo Fisher Scientific, A-11001,
1:800). Biotinylated proteins were detected with Alexa Fluor 594 streptavidin
(Thermo Fisher Scientific; $11227, 1:800). DAPI staining was used to determine the
nuclei. Selected endogenous proteins were detected with specific antibodies
(Supplementary Data la) and subsequently with Alexa Fluor 594 -conjugated
anti-rabbit antibody (Thermo Fisher Scientific, A11012, dilution 1:800). Wide-field
fluoresce microscope (Leica, Leica DM6000, Welzlar, Germany) with HCXPL APO
63x/1.40-0.60 oil objective was used to image the samples. For imaging sub-
mitochondrial proteins, confocal microscopy (Leica TCS SP8 STED, Leica) with
HC PL APO 93x/1.30 motCORR glycerol object was used. The image files were
processed with LAS X (Leica), and ImageJ softwares.

Cell culture. For generation of the stable cell lines inducibly expressing the MAC-
tagged versions of the baits, Flp-In™ T-REx™ 293 cell lines (Invitrogen, Life
Technologies, R78007, cultured in manufacture’s recommended conditions) were
co-transfected with the expression vector and the pOG44 vector (Invitrogen) using
the Fugene6 transfection reagent (Roche Applied Science). Two days after
transfection, cells were selected in 50 ug ml~! streptomycin and hygromycin

(100 ug ml™1) for 2 weeks, and then the positive clones were pooled and amplified.
Stable cells expressing MAC-tag fused to green fluorescent protein (GFP) were
used as negative controls and processed in parallel to the bait proteins.

Each stable cell line was expanded to 80% confluence in 20 x 150 mm cell
culture plates. Ten plates were used for AP-MS approach, in which 1 pgml~!
tetracycline was added for 24 h induction, and 10 plates for BioID approach, in
which in addition to tetracycline, 50 uM biotin was added for 24 h before
harvesting. Cells from 5 x 150 mm fully confluent dishes (~5 x 107 cells) were
pelleted as one biological sample. Thus, each bait protein has two biological
replicates in two different approaches. Samples were snap frozen and stored
at —80°C.

Human osteosarcoma cell line U-2 OS (ATCC, HTB-9) and prostate cancer cell
line DU145 (ATCC, HTB-81) were routinely maintained in ATCC-recommended
conditions. For transient transfections, DU-145 or U-2 OS cells were seeded 24 h
before transfection to 7 x 150 mm cell culture plates. Transient transfections for
U-2 OS were conducted using DreamFect Gold transfection reagent (OZ
Biosciences, Marseille, France), and for DU-145 with Helix-IN™ (FP29, OZ
Biosciences) according to the manufacturer’s instructions. The in vivo biotinylation
was activated by addition of biotin 24 h post-transfection to a final concentration of
50 uM. Cells from the 7 x 150 mm cell culture plates (~7 x 107 cells) were collected
and snap frozen. Analyses of the baits were performed as two biological replicates.

Affinity purification of the interacting proteins. For AP-MS approach, the
sample was lysed in 3 ml of lysis buffer 1 (0.5% IGEPAL, 50 mM Hepes, pH 8.0,
150 mM NaCl, 50 mM NaF, 1.5 mM NaVO3;, 5 mM EDTA, supplemented with 0.5
mM PMSF and protease inhibitors; Sigma).

For BiolD approach, Cell pellet was thawed in 3 ml ice-cold lysis buffer 2 (0.5%
IGEPAL, 50 mM Hepes, pH 8.0, 150 mM NaCl, 50 mM NaF, 1.5 mM NaVO;, 5
mM EDTA, 0.1% SDS, supplemented with 0.5 mM PMSF and protease inhibitors;
Sigma). Lysates were sonicated, treated with benzonase.

Cleared lysate was obtained by centrifugation and loaded consecutively on
spin columns (Bio-Rad) containing lysis buffer 1 prewashed 200 ul Strep-Tactin
beads (IBA, GmbH). The beads were then washed 3 x 1 ml with lysis buffer 1
and 4 x 1 ml with wash buffer (50 mM Tris-HCI, pH 8.0, 150 mM NaCl, 50 mM
NaF, 5mM EDTA). Following the final wash, beads were then resuspended in
2 % 300 pl elution buffer (50 mM Tris-HCI, pH 8.0, 150 mM NaCl, 50 mM NaF,
5mM EDTA, 0.5 mM Biotin) for 5 mins and eluates collected into an Eppendorf
tubes, followed by a reduction of the cysteine bonds with 5 mM Tris(2-
carboxyethyl)phosphine (TCEP) for 30 mins at 37 °C and alkylation with 10
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mM iodoacetamide. The proteins were then digested to peptides with
sequencing grade modified trypsin (Promega, V5113) at 37 °C overnight. After
quenching with 10% TFA, the samples were desalted by C18 reversed-phase
spin columns according to the manufacturer’s instructions (Harvard
Apparatus). The eluted peptide sample was dried in vacuum centrifuge and
reconstituted to a final volume of 30 pl in 0.1% TFA and 1% CH;CN.

Liquid chromatography-mass spectrometry (LC-MS). Analysis was performed
on a Q-Exactive mass spectrometer using Xcalibur version 3.0.63 coupled with an
EASY-nLC 1000 system via an electrospray ionization sprayer (Thermo Fisher
Scientific). In detail, peptides were eluted and separated with a C18 precolumn
(Acclaim PepMap 100, 75 ym x 2 cm, 3 um, 100 A, Thermo Scientific) and ana-
lytical column (Acclaim PepMap RSLC, 75 pum x 15 cm, 2 pm, 100 A; Thermo
Scientific), using a 60 min buffer gradient ranging from 5 to 35% buffer B, followed
by a 5 min gradient from 35 to 80% buffer B and 10 min gradient from 80 to 100%
buffer B at a flow rate of 300 nl min~! (buffer A: 0.1% formic acid in 98% HPLC
grade water and 2% acetonitrile; buffer B: 0.1% formic acid in 98% acetonitrile and
2% water). For direct LC-MS analysis, 4 ul peptide samples were automatically
loaded from an enclosed cooled autosampler. Data-dependent FTMS acquisition
was in positive ion mode for 80 min. A full scan (200-2000 m z~1) was performed
with a resolution of 70,000 followed by top10 CID-MS? ion trap scans with
resolution of 17,500. Dynamic exclusion was set for 30's. Acquired MS? spectral
data files (Thermo.RAW) were searched with Proteome Discoverer 1.4 (Thermo
Scientific) using SEQUEST search engine of the selected human component of
UniProtKB/SwissProt database (http://www.uniprot.org/, version 2015-09). The
following parameters were applied: Trypsin was selected as the enzyme and a
maximum of 2 missed cleavages were permitted, precursor mass tolerance at +15
ppm and fragment mass tolerance at 0.05 Da. Carbamidomethylation of cysteine,
was defined as static modifications. Oxidation of methionine and biotinylation of
lysine and N-termini were set as variable modifications. All reported data were
based on high-confidence peptides assigned in Proteome Discoverer with
FDR<1%).

Identification of the HCls. Significance Analysis of INTeractome (SAINT)-express
version 3.6.09%% and Contaminant Repository for Affinity Purification (CRA-
Pome, http://www.crapome.org/)®” were used as statistical tools for identification
of specific high-confidence interactions from our AP-MS data. 16 GFP control runs
(8 N-terminal MAC-GFP and 8 C-terminal MAC-GFP) were used as control
counts for each hit and the final results only considering proteins with SAINT
score > 0.73. This corresponds to an estimated protein-level Bayesian FDR of <0.05.
Furthermore, we used the CRAPome database with a cutoff frequency of >20%
(282) except the average spectral count fold change >3 was set for assigning HClIs.

Clustering analysis. Prey protein frequency count matrix was generated using
DAVID gene functional classification tool to provide the gene ontology (GO) terms
(domains, biological process and molecular function). The p-values associated with
each annotation terms has p < 0.01(by a modified Fisher’s exact test). Hierarchical
cluster was performed by centered correlation (both baits and interactors; average
linkage) using Cluster 3.0 and the clusters were visualized with Tree View 1.1.6 and
the matrix2png web server (http://www.chibi.ubc.ca/matrix2png/).

Networks and maps. Protein interaction networks are constructed from SAINT
data that were imported into Cytoscape 3.2.1%%. The known prey-prey interaction
data were obtained from PINA2 database (http://omics.bjcancer.org/pina/)

MS microscopy database construction. The high-confidence interacting proteins
(HCIPs) obtained from previous filtering steps were sorted according to the cor-
responding bait protein localization information to build the reference database,
containing the following localization information: peroxisome, microtubule,
endosome (combined: early, late and recycling endosome), proteasome, nuclear
envelope, Golgi (combined: trans-Golgi and cis-Golgi), lysosome, nucleolus, plasma
membrane, endoplasmic reticulum, mitochondria, centrosome, chromatin, exo-
some. To elucidate sub-organelle localization (OMM, IMS and matrix) within
mitochondria, three mitochondrial bait proteins were used.

Score calculation. Final localization scores for all localization groups of a given
bait of interest were calculated by first dividing the sum of the normalized peptide-
spectrum match (PSM) values of the interactors that matched to the bait of interest
and a localization group by the sum of PSM values of all bait interactors that
matched any localization group. This was then multiplied by the sum of PSM
values of interactors of the localization group that matched the bait interactors of
interest divided by the sum of PSM values of all interactors of the localization
group. The PSMs were bait normalized, i.e., the PSM of each interactor was divided
by the PSM of the bait. The score reflects subcellular localization by numerically
describing the similarity of the subcellular environment and the time spent there
between the bait of interest and each localization group.
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Results visualization. The MS microscopy analyses are presented as polar plots
created with an in-house python script, where the circle has been equally divided
into 14 sectors, each sector representing one specific subcellular location. For the
sub-organelle localization analysis, three sectors representing matrix, IMS and
OMM are shown in the plot. Differently colored sector areas indicate the possible
location score of the query bait, with scores between 0 and 0.5 marked in red,
between 0.5 and 0.75 in yellow, and 0.75 and 1 in green.

Online interface. We have developed a web application (R-shiny; http://www.
biocenter.helsinki.fi/bi/protein/msmic) for visualization of protein localizations by
MS microscopy. A user can upload an input file (after SAINT and CRAPome
filtering) and visualize the bait protein’s dynamic localization. The polar plot as
well as a parsed data matrix can also be downloaded.

Determining relative intramolecular distances of complexes. The PSM values
from both the BioID and AP-MS approaches were first averaged from the replicate
samples and the averaged PSMs from the preys were normalized by dividing

them by the averaged PSMs of the baits. The normalized PSMs were then used to
calculate the relative Euclidean distance between the baits and the preys using the

formula \/ (PSMpIP — PSMBioIDy? | (PSM?}Q;MS — PSMAEMS)? in an in-house

R script. These values (in logl0 scale) were also used to create the scatter plots.
Pearson’s and Spearman’s correlations were used to assess the correlations between
the relative distance measures of the CDK8 and MED13 baits (the correlation
coefficients and their associated p-values are shown). MaxQuant (version 1.6)%°
was used to obtain the parent-ion mass (MS1) information.

Crystal structure and CryoEM docking. The human core TFIIH crystal structure
(Protein Data Bank (PDB): 5IVW) was docked into cryoEM reconstructions
described by He et al. (Electron Microscopy Data Bank (EMDB): 8131)*3. The crystal
structure of human CDK?7 (Protein Data Bank: 1UA2)*’ was simply placed in the
possible interaction direction using Chimera. The human CDKS8 crystal structure
(PDB: 3RGF)®! was docked into cryoEM reconstructions described by Tsai et al.
(EMDB: 5588), The mediator complex structure for head module (PDB:4GWP*,
middle module®®, tail module(5U08)° were docked into cyroEM reconstructions
described by Tsai et al. (EMDB:2634) . Crystal structure of Arp2/3 complex (PDB:
4]D2)%2 was showing in surface representation.

Data availability. The MS data for all the 518 runs are available at the Pepti-
deAtlas raw data repository under the accession code PASS01076 (see also
Supplementary Data 1b). The protein interactions from this publication have
been submitted to the IMEx consortium (http://www.imexconsortium.org)
through IntAct’? and assigned the identifier IM-26301. Results of using MS
microscopy on published BioID datasets are available at http://www.biocenter.
helsinki.fi/bi/protein/msmic/example.pdf. Other data that support this study are
available from the corresponding author upon reasonable request.
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