398 research outputs found
Nonlinear Dynamics of the Parker Scenario for Coronal Heating
The Parker or field line tangling model of coronal heating is studied
comprehensively via long-time high-resolution simulations of the dynamics of a
coronal loop in cartesian geometry within the framework of reduced
magnetohydrodynamics (RMHD). Slow photospheric motions induce a Poynting flux
which saturates by driving an anisotropic turbulent cascade dominated by
magnetic energy. In physical space this corresponds to a magnetic topology
where magnetic field lines are barely entangled, nevertheless current sheets
(corresponding to the original tangential discontinuities hypothesized by
Parker) are continuously formed and dissipated.
Current sheets are the result of the nonlinear cascade that transfers energy
from the scale of convective motions () down to the dissipative
scales, where it is finally converted to heat and/or particle acceleration.
Current sheets constitute the dissipative structure of the system, and the
associated magnetic reconnection gives rise to impulsive ``bursty'' heating
events at the small scales. This picture is consistent with the slender loops
observed by state-of-the-art (E)UV and X-ray imagers which, although apparently
quiescent, shine bright in these wavelengths with little evidence of entangled
features.
The different regimes of weak and strong MHD turbulence that develop, and
their influence on coronal heating scalings, are shown to depend on the loop
parameters, and this dependence is quantitatively characterized: weak
turbulence regimes and steeper spectra occur in {\it stronger loop fields} and
lead to {\it larger heating rates} than in weak field regions.Comment: 22 pages, 18 figures, uses emulateapj, for mpeg file associated to
Figure 17e see (temporarily) http://www.df.unipi.it/~rappazzo/arxiv/jfl.mpg,
ApJ, in pres
Ideal kink instability of a magnetic loop equilibrium
The force-free coronal loop model by Titov & D\'emoulin (1999} is found to be
unstable with respect to the ideal kink mode, which suggests this instability
as a mechanism for the initiation of flares. The long-wavelength () mode
grows for average twists \Phi\ga3.5\pi (at a loop aspect ratio of
5). The threshold of instability increases with increasing major loop radius,
primarily because the aspect ratio then also increases. Numerically obtained
equilibria at subcritical twist are very close to the approximate analytical
equilibrium; they do not show indications of sigmoidal shape. The growth of
kink perturbations is eventually slowed down by the surrounding potential
field, which varies only slowly with radius in the model. With this field a
global eruption is not obtained in the ideal MHD limit. Kink perturbations with
a rising loop apex lead to the formation of a vertical current sheet below the
apex, which does not occur in the cylindrical approximation.Comment: Astron. Astrophys. Lett., accepte
High-Lundquist Number Scaling in Three-Dimensional Simulations of Parker's Model of Coronal Heating
Parker's model is one of the most discussed mechanisms for coronal heating
and has generated much debate. We have recently obtained new scaling results in
a two-dimensional (2D) version of this problem suggesting that the heating rate
becomes independent of resistivity in a statistical steady state [Ng and
Bhattacharjee, Astrophys. J., 675, 899 (2008)]. Our numerical work has now been
extended to 3D by means of large-scale numerical simulations. Random
photospheric footpoint motion is applied for a time much longer than the
correlation time of the motion to obtain converged average coronal heating
rates. Simulations are done for different values of the Lundquist number to
determine scaling. In the high-Lundquist number limit, the coronal heating rate
obtained so far is consistent with a trend that is independent of the Lundquist
number, as predicted by previous analysis as well as 2D simulations. In the
same limit the average magnetic energy built up by the random footpoint motion
tends to have a much weaker dependence on the Lundquist number than that in the
2D simulations, due to the formation of strong current layers and subsequent
disruption when the equilibrium becomes unstable. We will present scaling
analysis showing that when the dissipation time is comparable or larger than
the correlation time of the random footpoint motion, the heating rate tends to
become independent of Lundquist number, and that the magnetic energy production
is also reduced significantly.Comment: Accepted for publication in Astrophysical Journa
Influence of the definition of dissipative events on their statistics
A convenient and widely used way to study the turbulent plasma in the solar
corona is to do statistics of properties of events (or structures), associated
with flares, that can be found in observations or in numerical simulations.
Numerous papers have followed such a methodology, using different definitions
of an event, but the reasons behind the choice of a particular definition (and
not another one) is very rarely discussed. We give here a comprehensive set of
possible event definitions starting from a one-dimensional data set such as a
time-series of energy dissipation. Each definition is then applied to a
time-series of energy dissipation issued from simulations of a shell-model of
magnetohydrodynamic turbulence as defined in Giuliani and Carbone (1998), or
from a new model of coupled shell-models designed to represent a magnetic loop
in the solar corona. We obtain distributions of the peak dissipation power,
total energy, duration and waiting-time associated to each definition. These
distributions are then investigated and compared, and the influence of the
definition of an event on statistics is discussed. In particular, power-law
distributions are more likely to appear when using a threshold. The sensitivity
of the distributions to the definition of an event seems also to be weaker for
events found in a highly intermittent time series. Some implications on
statistical results obtained from observations are discussed.Comment: 8 pages, 13 figures. Submitted to Astronomy&Astrophysic
Structures in magnetohydrodynamic turbulence: detection and scaling
We present a systematic analysis of statistical properties of turbulent
current and vorticity structures at a given time using cluster analysis. The
data stems from numerical simulations of decaying three-dimensional (3D)
magnetohydrodynamic turbulence in the absence of an imposed uniform magnetic
field; the magnetic Prandtl number is taken equal to unity, and we use a
periodic box with grids of up to 1536^3 points, and with Taylor Reynolds
numbers up to 1100. The initial conditions are either an X-point configuration
embedded in 3D, the so-called Orszag-Tang vortex, or an
Arn'old-Beltrami-Childress configuration with a fully helical velocity and
magnetic field. In each case two snapshots are analyzed, separated by one
turn-over time, starting just after the peak of dissipation. We show that the
algorithm is able to select a large number of structures (in excess of 8,000)
for each snapshot and that the statistical properties of these clusters are
remarkably similar for the two snapshots as well as for the two flows under
study in terms of scaling laws for the cluster characteristics, with the
structures in the vorticity and in the current behaving in the same way. We
also study the effect of Reynolds number on cluster statistics, and we finally
analyze the properties of these clusters in terms of their velocity-magnetic
field correlation. Self-organized criticality features have been identified in
the dissipative range of scales. A different scaling arises in the inertial
range, which cannot be identified for the moment with a known self-organized
criticality class consistent with MHD. We suggest that this range can be
governed by turbulence dynamics as opposed to criticality, and propose an
interpretation of intermittency in terms of propagation of local instabilities.Comment: 17 pages, 9 figures, 5 table
Sex attribution, gender identity and quality of life in disorders of sex development due to 45,X/46,XY mosaicism: methods for clinical and psychosocial assessment.
The choice of sex in newborns with genital ambiguity is challenging. Information concerning the satisfaction of subjects with disorders of sex development from childhood to adulthood is required in order to address sex attribution policies. This study focuses on the methods that enable clinicians to investigate the alignment of phenotypes with gender identity and quality of life in people with disorders of this kind. These methods are presented as tools for studying a cohort of ten subjects with 45,X/46,XY mosaicism examined between 1985 and 2014 in the Department of Pediatric Endocrinology, Regina Margherita Children's Hospital, Turin: five children and five young adults, four reared as females and six as males. Clinical outcome was assessed by means of a clinical scoring system considering height, genital appearance, gonads and pubertal development. The Gender Identity Questionnaire for Children and the World Health Organization Quality of Life assessment were adopted. The four male children strongly identified with their assigned sex: male attribution was satisfactory until pubertal age. In young adults the clinical scores ranged between 55-65% for both genders. In the young male, the reduced sexual activity and the poor body image perception strongly affected his quality of life. The clinical scores of the two young female adults (60% for both) were not balanced with their quality of life scores (87.5% and 68.75% respectively): individual traits and social-familial context should be investigated in order to explain these differences. Clinical and psychosocial assessment in people with disorders of sex development is mandatory in order to plan care procedures; a detailed analysis requires adequate tools. Clinical scoring system, Gender Identity Questionnaire for Children and World Health Organization Quality of Life assessment can be used to investigate the alignment of physical phenotype with gender identity and quality of life
Coronal Heating, Weak MHD Turbulence and Scaling Laws
Long-time high-resolution simulations of the dynamics of a coronal loop in
cartesian geometry are carried out, within the framework of reduced
magnetohydrodynamics (RMHD), to understand coronal heating driven by motion of
field lines anchored in the photosphere. We unambiguously identify MHD
anisotropic turbulence as the physical mechanism responsible for the transport
of energy from the large scales, where energy is injected by photospheric
motions, to the small scales, where it is dissipated. As the loop parameters
vary different regimes of turbulence develop: strong turbulence is found for
weak axial magnetic fields and long loops, leading to Kolmogorov-like spectra
in the perpendicular direction, while weaker and weaker regimes (steeper
spectral slopes of total energy) are found for strong axial magnetic fields and
short loops. As a consequence we predict that the scaling of the heating rate
with axial magnetic field intensity , which depends on the spectral index
of total energy for given loop parameters, must vary from for weak
fields to for strong fields at a given aspect ratio. The predicted
heating rate is within the lower range of observed active region and quiet Sun
coronal energy losses.Comment: 4 pages, 5 figures, uses emulateapj, complies with published versio
- …