126 research outputs found

    Identification of Oxygen-Responsive Transcripts in the Silage Inoculant Lactobacillus buchneri CD034 by RNA Sequencing

    Get PDF
    Eikmeyer FG, Heinl S, Marx H, Pühler A, Grabherr R, Schlüter A. Identification of Oxygen-Responsive Transcripts in the Silage Inoculant Lactobacillus buchneri CD034 by RNA Sequencing. PLoS ONE. 2015;10(7): e0134149.The Lactobacillus buchneri CD034 strain, known to improve the ensiling process of green fodder and the quality of the silage itself was transcriptionally analyzed by sequencing of transcriptomes isolated under anaerobic vs. aerobic conditions. L. buchneri CD034 was first cultivated under anaerobic conditions and then shifted to aerobic conditions by aeration with 21% oxygen. Cultivations already showed that oxygen was consumed by L. buchneri CD034 after aeration of the culture while growth of L. buchneri CD034 was still observed. RNA sequencing data revealed that irrespective of the oxygen status of the culture, the most abundantly transcribed genes are required for basic cell functions such as protein biosynthesis, energy metabolism and lactic acid fermentation. Under aerobic conditions, 283 genes were found to be transcriptionally up-regulated while 198 genes were found to be down-regulated (p-value < 0.01). Up-regulated genes i. a. play a role in oxygen consumption via oxidation of pyruvate or lactate (pox, lctO). Additionally, genes encoding proteins required for decomposition of reactive oxygen species (ROS) such as glutathione reductase or NADH peroxidase were also found to be up-regulated. Genes related to pH homeostasis and redox potential balance were found to be down-regulated under aerobic conditions. Overall, genes required for lactic acid fermentation were hardly affected by the growth conditions applied. Genes identified to be differentially transcribed depending on the aeration status of the culture are suggested to specify the favorable performance of the strain in silage formation

    Verb-, Objekt- und Kontextinformation bei der Rezeption von Handlungsanweisungen

    Get PDF
    Weiß P, Hildebrandt B, Eikmeyer H-J, Rickheit G. Verb-, Objekt- und Kontextinformation bei der Rezeption von Handlungsanweisungen. In: Wachsmuth I, Jung B, eds. KogWis99 : Proceedings der 4. Fachtagung der Gesellschaft für Kognitionswissenschaft. St. Augustin: Infix-Verl.; 1999: 238-243.Für die Rezeption von Handlungsanweisungen sind Verben von besonderer Bedeutung. Im SFB 360 spielen vor allem Handlungsverben für Konstruktionsaufgaben eine Rolle. Um eine Instruktion angemessen zu verstehen, muss neben der Verbsemantik auch der situative Objektkontext beachtet werden. Es werden zwei Experimente vorgestellt, in denen (i) der Beitrag der sprachlich-semantischen Faktoren Verbspezifität und Spezifität der Benennung eines Zielobjektes in Interaktion mit den visuellen Kontextfaktoren referentielle Eindeutigkeit bzw. Ambiguität der Farbe und Funktion des Zielobjektes sowie (ii) die Position der Verben in den Anweisungen in Interaktion mit diesen Kontextfaktoren untersucht wurden. Es zeigt sich, dass die Rezeption von Anweisungen zur Manipulation von Objekten sowohl durch die sprachlich gegebene als auch durch die visuell verfügbare Information determiniert wird. Es wird dabei jeweils die Information zur Referenzauflösung herangezogen, die dafür besonders gut geeignet ist, und zwar unabhängig davon, aus welchem Sinneskanal sie stammt

    Effect of the strain Bacillus amyloliquefaciens FZB42 on the microbial community in the rhizosphere of lettuce under field conditions analyzed by whole metagenome sequencing

    Get PDF
    Kröber M, Wibberg D, Grosch R, et al. Effect of the strain Bacillus amyloliquefaciens FZB42 on the microbial community in the rhizosphere of lettuce under field conditions analyzed by whole metagenome sequencing. Frontiers in Microbiology. 2014;5: 252.Application of the plant associated bacterium Bacillus amyloliquefaciens FZB42 on lettuce (Lactuca sativa) confirmed its capability to promote plant growth and health by reducing disease severity (DS) caused by the phytopathogenic fungus Rhizoctonia solani. Therefore this strain is commercially applied as an eco-friendly plant protective agent. It is able to produce cyclic lipopeptides (CLP) and polyketides featuring antifungal and antibacterial properties. Production of these secondary metabolites led to the question of a possible impact of strain FZB42 on the composition of microbial rhizosphere communities after its application. Rating of DS and lettuce growth during a field trial confirmed the positive impact of strain FZB42 on the health of the host plant. To verify B. amyloliquefaciens as an environmentally compatible plant protective agent, its effect on the indigenous rhizosphere community was analyzed by metagenome sequencing. Rhizosphere microbial communities of lettuce treated with B. amyloliquefaciens FZB42 and non-treated plants were profiled by high-throughput metagenome sequencing of whole community DNA. Fragment recruitments of metagenome sequence reads on the genome sequence of B. amyloliquefaciens FZB42 proved the presence of the strain in the rhizosphere over 5 weeks of the field trial. Comparison of taxonomic community profiles only revealed marginal changes after application of strain FZB42. The orders Burkholderiales, Actinomycetales and Rhizobiales were most abundant in all samples. Depending on plant age a general shift within the composition of the microbial communities that was independent of the application of strain FZB42 was observed. In addition to the taxonomic profiling, functional analysis of annotated sequences revealed no major differences between samples regarding application of the inoculant strain

    Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions

    Get PDF
    Stolze Y, Zakrzewski M, Maus I, et al. Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions. Biotechnology for Biofuels. 2015;8(1): 14.Background Decomposition of biomass for biogas production can be practiced under wet and dry fermentation conditions. In contrast to the dry fermentation technology, wet fermentation is characterized by a high liquid content and a relatively low total solid content. In this study, the composition and functional potential of a biogas-producing microbial community in an agricultural biogas reactor operating under wet fermentation conditions was analyzed by a metagenomic approach applying 454-pyrosequencing. The obtained metagenomic dataset and corresponding 16S rRNA gene amplicon sequences were compared to the previously sequenced comparable metagenome from a dry fermentation process, meeting explicitly identical boundary conditions regarding sample and community DNA preparation, sequencing technology, processing of sequence reads and data analyses by bioinformatics tools. Results High-throughput metagenome sequencing of community DNA from the wet fermentation process applying the pyrosequencing approach resulted in 1,532,780 reads, with an average read length of 397 bp, accounting for approximately 594 million bases of sequence information in total. Taxonomic comparison of the communities from wet and dry fermentation revealed similar microbial profiles with Bacteria being the predominant superkingdom, while the superkingdom Archaea was less abundant. In both biogas plants, the bacterial phyla Firmicutes, Bacteroidetes, Spirochaetes and Proteobacteria were identified with descending frequencies. Within the archaeal superkingdom, the phylum Euryarchaeota was most abundant with the dominant class Methanomicrobia. Functional profiles of the communities revealed that environmental gene tags representing methanogenesis enzymes were present in both biogas plants in comparable frequencies. 16S rRNA gene amplicon high-throughput sequencing disclosed differences in the sub-communities comprising methanogenic Archaea between both processes. Fragment recruitments of metagenomic reads to the reference genome of the archaeon Methanoculleus bourgensis MS2T revealed that dominant methanogens within the dry fermentation process were highly related to the reference. Conclusions Although process parameters, substrates and technology differ between the wet and dry biogas fermentations analyzed in this study, community profiles are very similar at least at higher taxonomic ranks, illustrating that core community taxa perform key functions in biomass decomposition and methane synthesis. Regarding methanogenesis, Archaea highly related to the type strain M. bourgensis MS2T dominate the dry fermentation process, suggesting the adaptation of members belonging to this species to specific fermentation process parameters

    Deeply sequenced metagenome and metatranscriptome of a biogas-producing microbial community from an agricultural production-scale biogas plant

    Get PDF
    Bremges A, Maus I, Belmann P, et al. Deeply sequenced metagenome and metatranscriptome of a biogas-producing microbial community from an agricultural production-scale biogas plant. GigaScience. 2015;4(1): 33.Background The production of biogas takes place under anaerobic conditions and involves microbial decomposition of organic matter. Most of the participating microbes are still unknown and non-cultivable. Accordingly, shotgun metagenome sequencing currently is the method of choice to obtain insights into community composition and the genetic repertoire. Findings Here, we report on the deeply sequenced metagenome and metatranscriptome of a complex biogas-producing microbial community from an agricultural production-scale biogas plant. We assembled the metagenome and, as an example application, show that we reconstructed most genes involved in the methane metabolism, a key pathway involving methanogenesis performed by methanogenic Archaea. This result indicates that there is sufficient sequencing coverage for most downstream analyses. Conclusions Sequenced at least one order of magnitude deeper than previous studies, our metagenome data will enable new insights into community composition and the genetic potential of important community members. Moreover, mapping of transcripts to reconstructed genome sequences will enable the identification of active metabolic pathways in target organisms

    Complete Genome Sequencing of <i>Acinetobacter baumannii</i> Strain K50 Discloses the Large Conjugative Plasmid pK50a Encoding Carbapenemase OXA-23 and Extended-Spectrum β-Lactamase GES-11

    Get PDF
    Multidrug-resistant (MDR) Acinetobacter baumannii strains appeared as serious emerging nosocomial pathogens in clinical environments and especially in intensive care units (ICUs). A. baumannii strain K50, recovered from a hospitalized patient in Kuwait, exhibited resistance to carbapenems and additionally to ciprofloxacin, chloramphenicol, sulfonamides, amikacin, and gentamicin. Genome sequencing revealed that the strain possesses two plasmids, pK50a (79.6 kb) and pK50b (9.5 kb), and a 3.75-Mb chromosome. A. baumannii K50 exhibits an average nucleotide identity (ANI) of 99.98% to the previously reported Iraqi clinical isolate AA-014, even though the latter strain lacked plasmid pK50a. Strain K50 belongs to sequence type 158 (ST158) (Pasteur scheme) and ST499 (Oxford scheme). Plasmid pK50a is a member of the Aci6 (replication group 6 [RG6]) group of Acinetobacter plasmids and carries a conjugative transfer module and two antibiotic resistance gene regions. The transposon Tn2008 carries the carbapenemase gene blaOXA-23, whereas a class 1 integron harbors the resistance genes blaGES-11, aacA4, dfrA7, qacEΔ1, and sul1, conferring resistance to all b-lactams and reduced susceptibility to carbapenems and resistance to aminoglycosides, trimethoprim, quaternary ammonium compounds, and sulfamethoxazole, respectively. The class 1 integron is flanked by MITEs (miniature inverted-repeat transposable elements) delimiting the element at its insertion site.Instituto de Biotecnologia y Biologia Molecula
    corecore