138 research outputs found
Decomposition of Gene Expression State Space Trajectories
Representing and analyzing complex networks remains a roadblock to creating dynamic network models of biological processes and pathways. The study of cell fate transitions can reveal much about the transcriptional regulatory programs that underlie these phenotypic changes and give rise to the coordinated patterns in expression changes that we observe. The application of gene expression state space trajectories to capture cell fate transitions at the genome-wide level is one approach currently used in the literature. In this paper, we analyze the gene expression dataset of Huang et al. (2005) which follows the differentiation of promyelocytes into neutrophil-like cells in the presence of inducers dimethyl sulfoxide and all-trans retinoic acid. Huang et al. (2005) build on the work of Kauffman (2004) who raised the attractor hypothesis, stating that cells exist in an expression landscape and their expression trajectories converge towards attractive sites in this landscape. We propose an alternative interpretation that explains this convergent behavior by recognizing that there are two types of processes participating in these cell fate transitions—core processes that include the specific differentiation pathways of promyelocytes to neutrophils, and transient processes that capture those pathways and responses specific to the inducer. Using functional enrichment analyses, specific biological examples and an analysis of the trajectories and their core and transient components we provide a validation of our hypothesis using the Huang et al. (2005) dataset
Polygenic risk score is associated with increased disease risk in 52 Finnish breast cancer families
The risk of developing breast cancer is increased in women with family history of breast cancer and particularly in families with multiple cases of breast or ovarian cancer. Nevertheless, many women with a positive family history never develop the disease. Polygenic risk scores (PRSs) based on the risk effects of multiple common genetic variants have been proposed for individual risk assessment on a population level. We investigate the applicability of the PRS for risk prediction within breast cancer families. We studied the association between breast cancer risk and a PRS based on 75 common genetic variants in 52 Finnish breast cancer families including 427 genotyped women and pedigree information on similar to 4000 additional individuals by comparing the affected to healthy family members, as well as in a case-control dataset comprising 1272 healthy population controls and 1681 breast cancer cases with information on family history. Family structure was summarized using the BOADICEA risk prediction model. The PRS was associated with increased disease risk in women with family history of breast cancer as well as in women within the breast cancer families. The odds ratio (OR) for breast cancer within the family dataset was 1.55 [95 % CI 1.26-1.91] per unit increase in the PRS, similar to OR in unselected breast cancer cases of the case-control dataset (1.49 [1.38-1.62]). High PRS-values were informative for risk prediction in breast cancer families, whereas for the low PRS-categories the results were inconclusive. The PRS is informative in women with family history of breast cancer and should be incorporated within pedigree-based clinical risk assessment.Peer reviewe
Inflammation and tissue repair markers distinguish the nodular sclerosis and mixed cellularity subtypes of classical Hodgkin's lymphoma
Background:
Classical Hodgkin's lymphoma (cHL), although a malignant disease, has many features in common with an inflammatory condition. The aim of this study was to establish the molecular characteristics of the two most common cHL subtypes, nodular sclerosis (NS) and mixed cellularity (MC), based on molecular profiling and immunohistochemistry, with special reference to the inflammatory microenvironment.
Methods:
We analysed 44 gene expression profiles of cHL whole tumour tissues, 25 cases of NS and 19 cases of MC, using Affymetrix chip technology and immunohistochemistry.
Results:
In the NS subtype, 152 genes showed a significantly higher expression, including genes involved in extracellular matrix (ECM) remodelling and ECM deposition similar to wound healing. Among these were SPARC, CTSK and COLI. Immunohistochemistry revealed that the NS-related genes were mainly expressed by macrophages and fibroblasts. Fifty-three genes had a higher expression in the MC subtype, including several inflammation-related genes, such as C1Qα, C1Qβ and CXCL9. In MC tissues, the C1Q subunits were mainly expressed by infiltrating macrophages.
Conclusions and interpretations:
We suggest that the identified subtype-specific genes could reflect different phases of wound healing. Our study underlines the potential function of infiltrating macrophages in shaping the cHL tumour microenvironment
Foundations of Black Hole Accretion Disk Theory
This review covers the main aspects of black hole accretion disk theory. We
begin with the view that one of the main goals of the theory is to better
understand the nature of black holes themselves. In this light we discuss how
accretion disks might reveal some of the unique signatures of strong gravity:
the event horizon, the innermost stable circular orbit, and the ergosphere. We
then review, from a first-principles perspective, the physical processes at
play in accretion disks. This leads us to the four primary accretion disk
models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin)
disks, slim disks, and advection-dominated accretion flows (ADAFs). After
presenting the models we discuss issues of stability, oscillations, and jets.
Following our review of the analytic work, we take a parallel approach in
reviewing numerical studies of black hole accretion disks. We finish with a few
select applications that highlight particular astrophysical applications:
measurements of black hole mass and spin, black hole vs. neutron star accretion
disks, black hole accretion disk spectral states, and quasi-periodic
oscillations (QPOs).Comment: 91 pages, 23 figures, final published version available at
http://www.livingreviews.org/lrr-2013-
A 32 kb Critical Region Excluding Y402H in CFH Mediates Risk for Age-Related Macular Degeneration
Complement factor H shows very strong association with Age-related Macular Degeneration (AMD), and recent data suggest that multiple causal variants are associated with disease. To refine the location of the disease associated variants, we characterized in detail the structural variation at CFH and its paralogs, including two copy number polymorphisms (CNP), CNP147 and CNP148, and several rare deletions and duplications. Examination of 34 AMD-enriched extended families (N = 293) and AMD cases (White N = 4210 Indian = 134; Malay = 140) and controls (White N = 3229; Indian = 117; Malay = 2390) demonstrated that deletion CNP148 was protective against AMD, independent of SNPs at CFH. Regression analysis of seven common haplotypes showed three haplotypes, H1, H6 and H7, as conferring risk for AMD development. Being the most common haplotype H1 confers the greatest risk by increasing the odds of AMD by 2.75-fold (95% CI = [2.51, 3.01]; p = 8.31×10−109); Caucasian (H6) and Indian-specific (H7) recombinant haplotypes increase the odds of AMD by 1.85-fold (p = 3.52×10−9) and by 15.57-fold (P = 0.007), respectively. We identified a 32-kb region downstream of Y402H (rs1061170), shared by all three risk haplotypes, suggesting that this region may be critical for AMD development. Further analysis showed that two SNPs within the 32 kb block, rs1329428 and rs203687, optimally explain disease association. rs1329428 resides in 20 kb unique sequence block, but rs203687 resides in a 12 kb block that is 89% similar to a noncoding region contained in ΔCNP148. We conclude that causal variation in this region potentially encompasses both regulatory effects at single markers and copy number
Identification of a gene signature in cell cycle pathway for breast cancer prognosis using gene expression profiling data
<p>Abstract</p> <p>Background</p> <p>Numerous studies have used microarrays to identify gene signatures for predicting cancer patient clinical outcome and responses to chemotherapy. However, the potential impact of gene expression profiling in cancer diagnosis, prognosis and development of personalized treatment may not be fully exploited due to the lack of consensus gene signatures and poor understanding of the underlying molecular mechanisms.</p> <p>Methods</p> <p>We developed a novel approach to derive gene signatures for breast cancer prognosis in the context of known biological pathways. Using unsupervised methods, cancer patients were separated into distinct groups based on gene expression patterns in one of the following pathways: apoptosis, cell cycle, angiogenesis, metastasis, p53, DNA repair, and several receptor-mediated signaling pathways including chemokines, EGF, FGF, HIF, MAP kinase, JAK and NF-κB. The survival probabilities were then compared between the patient groups to determine if differential gene expression in a specific pathway is correlated with differential survival.</p> <p>Results</p> <p>Our results revealed expression of cell cycle genes is strongly predictive of breast cancer outcomes. We further confirmed this observation by building a cell cycle gene signature model using supervised methods. Validated in multiple independent datasets, the cell cycle gene signature is a more accurate predictor for breast cancer clinical outcome than the previously identified Amsterdam 70-gene signature that has been developed into a FDA approved clinical test MammaPrint<sup>®</sup>.</p> <p>Conclusion</p> <p>Taken together, the gene expression signature model we developed from well defined pathways is not only a consistently powerful prognosticator but also mechanistically linked to cancer biology. Our approach provides an alternative to the current methodology of identifying gene expression markers for cancer prognosis and drug responses using the whole genome gene expression data.</p
Human Stem Cell Cultures from Cleft Lip/Palate Patients Show Enrichment of Transcripts Involved in Extracellular Matrix Modeling By Comparison to Controls
Nonsyndromic cleft lip and palate (NSCL/P) is a complex disease resulting from failure of fusion of facial primordia, a complex developmental process that includes the epithelial-mesenchymal transition (EMT). Detection of differential gene transcription between NSCL/P patients and control individuals offers an interesting alternative for investigating pathways involved in disease manifestation. Here we compared the transcriptome of 6 dental pulp stem cell (DPSC) cultures from NSCL/P patients and 6 controls. Eighty-seven differentially expressed genes (DEGs) were identified. The most significant putative gene network comprised 13 out of 87 DEGs of which 8 encode extracellular proteins: ACAN, COL4A1, COL4A2, GDF15, IGF2, MMP1, MMP3 and PDGFa. Through clustering analyses we also observed that MMP3, ACAN, COL4A1 and COL4A2 exhibit co-regulated expression. Interestingly, it is known that MMP3 cleavages a wide range of extracellular proteins, including the collagens IV, V, IX, X, proteoglycans, fibronectin and laminin. It is also capable of activating other MMPs. Moreover, MMP3 had previously been associated with NSCL/P. The same general pattern was observed in a further sample, confirming involvement of synchronized gene expression patterns which differed between NSCL/P patients and controls. These results show the robustness of our methodology for the detection of differentially expressed genes using the RankProd method. In conclusion, DPSCs from NSCL/P patients exhibit gene expression signatures involving genes associated with mechanisms of extracellular matrix modeling and palate EMT processes which differ from those observed in controls. This comparative approach should lead to a more rapid identification of gene networks predisposing to this complex malformation syndrome than conventional gene mapping technologies
Gene expression meta-analysis supports existence of molecular apocrine breast cancer with a role for androgen receptor and implies interactions with ErbB family
<p>Abstract</p> <p>Background</p> <p>Pathway discovery from gene expression data can provide important insight into the relationship between signaling networks and cancer biology. Oncogenic signaling pathways are commonly inferred by comparison with signatures derived from cell lines. We use the Molecular Apocrine subtype of breast cancer to demonstrate our ability to infer pathways directly from patients' gene expression data with pattern analysis algorithms.</p> <p>Methods</p> <p>We combine data from two studies that propose the existence of the Molecular Apocrine phenotype. We use quantile normalization and XPN to minimize institutional bias in the data. We use hierarchical clustering, principal components analysis, and comparison of gene signatures derived from Significance Analysis of Microarrays to establish the existence of the Molecular Apocrine subtype and the equivalence of its molecular phenotype across both institutions. Statistical significance was computed using the Fasano & Franceschini test for separation of principal components and the hypergeometric probability formula for significance of overlap in gene signatures. We perform pathway analysis using LeFEminer and Backward Chaining Rule Induction to identify a signaling network that differentiates the subset. We identify a larger cohort of samples in the public domain, and use Gene Shaving and Robust Bayesian Network Analysis to detect pathways that interact with the defining signal.</p> <p>Results</p> <p>We demonstrate that the two separately introduced ER<sup>- </sup>breast cancer subsets represent the same tumor type, called Molecular Apocrine breast cancer. LeFEminer and Backward Chaining Rule Induction support a role for AR signaling as a pathway that differentiates this subset from others. Gene Shaving and Robust Bayesian Network Analysis detect interactions between the AR pathway, EGFR trafficking signals, and ErbB2.</p> <p>Conclusion</p> <p>We propose criteria for meta-analysis that are able to demonstrate statistical significance in establishing molecular equivalence of subsets across institutions. Data mining strategies used here provide an alternative method to comparison with cell lines for discovering seminal pathways and interactions between signaling networks. Analysis of Molecular Apocrine breast cancer implies that therapies targeting AR might be hampered if interactions with ErbB family members are not addressed.</p
Investigating the effect of paralogs on microarray gene-set analysis
<p>Abstract</p> <p>Background</p> <p>In order to interpret the results obtained from a microarray experiment, researchers often shift focus from analysis of individual differentially expressed genes to analyses of sets of genes. These gene-set analysis (GSA) methods use previously accumulated biological knowledge to group genes into sets and then aim to rank these gene sets in a way that reflects their relative importance in the experimental situation in question. We suspect that the presence of paralogs affects the ability of GSA methods to accurately identify the most important sets of genes for subsequent research.</p> <p>Results</p> <p>We show that paralogs, which typically have high sequence identity and similar molecular functions, also exhibit high correlation in their expression patterns. We investigate this correlation as a potential confounding factor common to current GSA methods using Indygene <url>http://www.cbio.uct.ac.za/indygene</url>, a web tool that reduces a supplied list of genes so that it includes no pairwise paralogy relationships above a specified sequence similarity threshold. We use the tool to reanalyse previously published microarray datasets and determine the potential utility of accounting for the presence of paralogs.</p> <p>Conclusions</p> <p>The Indygene tool efficiently removes paralogy relationships from a given dataset and we found that such a reduction, performed prior to GSA, has the ability to generate significantly different results that often represent novel and plausible biological hypotheses. This was demonstrated for three different GSA approaches when applied to the reanalysis of previously published microarray datasets and suggests that the redundancy and non-independence of paralogs is an important consideration when dealing with GSA methodologies.</p
- …