16 research outputs found

    The use in grass production of clinoptilolite as an ammonia adsorbent and a nitrogen carrier

    Get PDF
    Clinoptilolite-rich tuff (NZ) from the Zlatokop deposit (Vranjska Banja, Serbia) was studied as a nitrogen carrier for grass production. The mechanism of binding ammonium cations present in aqueous solutions by NZ was examined, as well as the possibility of adsorption of ammonia released in fresh cattle manure during its fermentation. The NH4+ binding from solutions proceeded via an ion-exchange process that followed pseudo-second-order kinetics. Adsorption isotherms studied at 298-318 K followed the Freundlich isotherm equation. The NZ readily adsorbs ammonia liberated from manure and the addition of 10 wt. % of NZ to manure can preserve up to 90 % of ammonia. The potential benefit of this effect was examined in greenhouse pot experiments with Italian ryegrass (Lolium multiflorum, var. Macho) using three different types of soil (silty, clayey and sandy). The zeta potential measurements showed that the stability of their colloidal dispersions differed mutually and that the addition of NZ affected the stability and nitrogen cycling differently. All results indicated that NZ could be applied in grass production

    Small-scale on-site treatment of fecal matter: comparison of treatments for resource recovery and sanitization

    Get PDF
    On-site small-scale sanitation is common in rural areas and areas without infrastructure, but the treatment of the collected fecal matter can be inefficient and is seldom directed to resource recovery. The aim of this study was to compare low-technology solutions such as composting and lactic acid fermentation (LAF) followed by vermicomposting in terms of treatment efficiency, potential human and environmental risks, and stabilization of the material for reuse in agriculture. A specific and novel focus of the study was the fate of native pharmaceutical compounds in the fecal matter. Composting, with and without the addition of biochar, was monitored by temperature and CO2 production and compared with LAF. All treatments were run at three different ambient temperatures (7, 20, and 38°C) and followed by vermicomposting at room temperature. Materials resulting from composting and LAF were analyzed for fecal indicators, physicochemical characteristics, and residues of ten commonly used pharmaceuticals and compared to the initial substrate. Vermicomposting was used as secondary treatment and assessed by enumeration of Escherichia coli, worm density, and physicochemical characteristics. Composting at 38°C induced the highest microbial activity and resulted in better stability of the treated material, higher N content, lower numbers of fecal indicators, and less pharmaceutical compounds as compared to LAF. Even though analysis of pH after LAF suggested incomplete fermentation, E. coli cell numbers were significantly lower in all LAF treatments compared to composting at 7°C, and some of the anionic pharmaceutical compounds were detected in lower concentrations. The addition of approximately 5 vol % biochar to the composting did not yield significant differences in measured parameters. Vermicomposting further stabilized the material, and the treatments previously composted at 7°C and 20°C had the highest worm density. These results suggest that in small-scale decentralized sanitary facilities, the ambient temperatures can significantly influence the treatment and the options for safe reuse of the material.publishedVersio

    Rhizosphere Organic Anions Play a Minor Role in Improving Crop Species' Ability to Take Up Residual Phosphorus (P) in Agricultural Soils Low in P Availability

    Get PDF
    Many arable lands have accumulated large reserves of residual phosphorus (P) and a relatively large proportion of soil P is less available for uptake by plants. Root released organic anions are widely documented as a key physiological strategy to enhance P availability, while limited information has been generated on the contribution of rhizosphere organic anions to P utilization by crops grown in agricultural soils that are low in available P and high in extractable Ca, Al, and Fe. We studied the role of rhizosphere organic anions in P uptake from residual P in four common crops Triticum aestivum, Avena sativa, Solanum tuberosum, and Brassica napus in low- and high-P availability agricultural soils from long-term fertilization field trials in a mini-rhizotron experiment with four replications. Malate was generally the dominant organic anion. More rhizosphere citrate was detected in low P soils than in high P soil. B. napus showed 74–103% increase of malate in low P loam, compared with clay loam. A. sativa had the greatest rhizosphere citrate concentration in all soils (5.3–15.2 μmol g−1 root DW). A. sativa also showed the highest level of root colonization by arbuscular mycorrhizal fungi (AMF; 36 and 40%), the greatest root mass ratio (0.51 and 0.66) in the low-P clay loam and loam respectively, and the greatest total P uptake (5.92 mg P/mini-rhizotron) in the low-P loam. B. napus had 15–44% more rhizosphere acid phosphatase (APase) activity, ~0.1–0.4 units lower rhizosphere pH than other species, the greatest increase in rhizosphere water-soluble P in the low-P soils, and the greatest total P uptake in the low-P clay loam. Shoot P content was mainly explained by rhizosphere APase activity, water-soluble P and pH within low P soils across species. Within species, P uptake was mainly linked to rhizosphere water soluble P, APase, and pH in low P soils. The effects of rhizosphere organic anions varied among species and they appeared to play minor roles in improving P availability and uptake

    The use in grass production of clinoptilolite as an ammonia adsorbent and a nitrogen carrier

    No full text
    The clinoptilolite-rich tuff (NZ) from Zlatokop deposit (Vranjska Banja, Serbia) has been studied as a nitrogen carrier for grass production. Mechanism of binding ammonium cations present in water solutions by NZ has been examined as well as possibility of adsorption of ammonia released in fresh cattle manure during its fermentation. The NH4+ binding from solutions proceeds via an ion-exchange process which follows the pseudo-second-order kinetics. Adsorption isotherms studied at 298-318 K follow the Freundlich isotherm equation. The NZ readily adsorbs ammonia liberated from manure and an addition of 10 wt.% of NZ to manure can preserve up to 90% of ammonia. The potential benefit of this effect has been examined in greenhouse pot experiments with the Italian ryegrass (Lolium multiflorum, var. Macho) using three different types of soil (silty, clayey and sandy). The zeta potential measurements show that stability of their colloidal dispersions differs mutually and that addition of the NZ differently affects the stability and nitrogen cycling. All results indicate that NZ can be applied in grass production. [Projekat Ministarstva nauke Republike Srbije, br. 172018 and Norwegian Programme in Higher Education, Research and Development HERD

    Recycling of biogas digestates in plant production: NPK fertilizer value and risk of leaching

    Get PDF
    Abstract Purpose The main purposes of the study were to assess the NPK fertilizer value of biogas digestates in different soils and to evaluate the risk of unwanted nutrient leaching. Methods The fertilizer value of digestates from anaerobic digesters was investigated in a greenhouse pot experiment with wheat in three different soils; silt, loam and sand. The digestates were based on different feedstock and had a low, dry matter content. The fertilizing effect of digestates was compared to mineral fertilizer and manure. To investigate the fate of excess nutrients in soil after the growing season, the pots were leached after harvest. A complementary soil column leaching experiment without plants was carried out in the laboratory. Results The concentration of ammonium in digestates provided a good indicator of the nitrogen fertilizer value of the digestates. In the silt and loam, the ammonium N fraction in digestates had a fertilizer replacement value equal to that of mineral fertilizer N, whereas the replacement value was higher in the nutrient poor sandy soil. Digestates often have a ratio between nitrogen, phosphorus and potassium which is not favourable for plant growth. However, the suboptimal balance did not result in reduced plant growth or unwanted leaching from soil. Conclusions The results show that digestates from biogas production based on fundamentally different feedstock are promising as NPK fertilizers. The N fertilization can simply be based on the digestate NH4 + concentration and, at least for wheat production, considerable variation in the concentrations of K and P can be tolerated

    Small-scale on-site treatment of fecal matter: comparison of treatments for resource recovery and sanitization

    No full text
    On-site small-scale sanitation is common in rural areas and areas without infrastructure, but the treatment of the collected fecal matter can be inefficient and is seldom directed to resource recovery. The aim of this study was to compare low-technology solutions such as composting and lactic acid fermentation (LAF) followed by vermicomposting in terms of treatment efficiency, potential human and environmental risks, and stabilization of the material for reuse in agriculture. A specific and novel focus of the study was the fate of native pharmaceutical compounds in the fecal matter. Composting, with and without the addition of biochar, was monitored by temperature and CO2 production and compared with LAF. All treatments were run at three different ambient temperatures (7, 20, and 38°C) and followed by vermicomposting at room temperature. Materials resulting from composting and LAF were analyzed for fecal indicators, physicochemical characteristics, and residues of ten commonly used pharmaceuticals and compared to the initial substrate. Vermicomposting was used as secondary treatment and assessed by enumeration of Escherichia coli, worm density, and physicochemical characteristics. Composting at 38°C induced the highest microbial activity and resulted in better stability of the treated material, higher N content, lower numbers of fecal indicators, and less pharmaceutical compounds as compared to LAF. Even though analysis of pH after LAF suggested incomplete fermentation, E. coli cell numbers were significantly lower in all LAF treatments compared to composting at 7°C, and some of the anionic pharmaceutical compounds were detected in lower concentrations. The addition of approximately 5 vol % biochar to the composting did not yield significant differences in measured parameters. Vermicomposting further stabilized the material, and the treatments previously composted at 7°C and 20°C had the highest worm density. These results suggest that in small-scale decentralized sanitary facilities, the ambient temperatures can significantly influence the treatment and the options for safe reuse of the material

    Organic contaminants of emerging concern in Norwegian digestates from biogas production

    No full text
    The aim of this study was to analyze a variety of environmental organic contaminants of emerging concern (CEC) and their metabolites in representative digestate samples from Norwegian biogas production plants. Biogas digestates can be a valuable source for soil amendments and/or fertilizers in commercial agricultural. It is important to assess whether the digestates contain harmful chemicals in order to avoid unintended exposure of human consumers. In total 19 biogas digestates from 12 biogas production plants in Norway were collected and analyzed. Furthermore, process related parameters such as pretreatment of substrates, additives, flocculation and temperature conditions were considered for interpretation of the results. The CEC levels found in the digestates were shown to be dependent on the original composition of the substrate, dry-matter content, and conditioning of the substrate. The sunscreen octocrylene (147 µg/L) and acetaminophen (paracetamol; 58.6 µg/L) were found at the highest concentrations in liquid digestates whereas octocrylene (> 600 ng/g, on a wet weight basis = ww ) and the flame retardant TCPP (tris (1-chloro-2-propyl >500 ng/g ww) were found at the highest levels in solid digestates, exceeding even the upper method limit of quantification threshold (uLOQ). The highest levels of total CECs were measured in solid digestates (1411 ng/g ww) compared to liquid digestates (354 µg/L equals 354 ng/g). The occurrence of CECs in digestate samples, even after extensive and optimized anaerobic digestion, indicate that the operational conditions of the treatment process should be adjusted in order to minimize CEC contamination
    corecore