3,434 research outputs found

    Absorptive capacity and the growth and investment effects of regional transfers : a regression discontinuity design with heterogeneous treatment effects

    Get PDF
    Researchers often estimate average treatment effects of programs without investigating heterogeneity across units. Yet, individuals, firms, regions, or countries vary in their ability, e.g., to utilize transfers. We analyze Objective 1 Structural Funds transfers of the European Commission to regions of EU member states below a certain income level by way of a regression discontinuity design with systematically heterogeneous treatment effects. Only about 30% and 21% of the regions - those with sufficient human capital and good-enough institutions - are able to turn transfers into faster per-capita income growth and per-capita investment. In general, the variance of the treatment effect is much bigger than its mean

    Going NUTS: The Effect of EU Structural Funds on Regional Performance

    Get PDF
    The European Union (EU) provides grants to disadvantaged regions of member states to allow them to catch up with the EU average. Under the Objective 1 scheme, NUTS2 regions with a GDP per capita level below 75% of the EU average qualify for structural funds transfers from the central EU budget. This rule gives rise to a regression-discontinuity design that exploits the discrete jump in the probability of EU transfer receipt at the 75% threshold. Additional variability arises for smaller regional aggregates - so-called NUTS3 regions - which are nested in a NUTS2 mother region. Whereas some relatively rich NUTS3 regions may receive EU funds because their NUTS2 mother region qualifies, other relatively poor NUTS3 regions may not receive EU funds because their NUTS2 mother region does not qualify. We find positive growth effects of Objective 1 funds, but no employment effects. A simple cost-benefit calculation suggests that Objective 1 transfers are not only effective, but also cost-efficient.structural funds, regional growth, regression discontinuity design, quasi-randomized experiment

    On the π\pi and KK as qqˉq \bar q Bound States and Approximate Nambu-Goldstone Bosons

    Full text link
    We reconsider the two different facets of π\pi and KK mesons as qqˉq \bar q bound states and approximate Nambu-Goldstone bosons. We address several topics, including masses, mass splittings between π\pi and ρ\rho and between KK and KK^*, meson wavefunctions, charge radii, and the KπK-\pi wavefunction overlap.Comment: 15 pages, late

    The MAHB, the Culture Gap, and Some Really Inconvenient Truths

    Get PDF
    Humanity's failure to take adequate actions to stem a likely environmental collapse calls for extraordinary measures to understand and alter human behavior, argues Paul Ehrlich. His Millennium Assessment of Human Behavior (MAHB) aims to chart the path to a sustainable future

    Going NUTS: The Effect of EU Structural Funds on Regional Performance

    Get PDF
    The European Union (EU) provides grants to disadvantaged regions of member states to allow them to catch up with the EU average. Under the Objective 1 scheme, NUTS2 regions with a GDP per capita level below 75% of the EU average qualify for structural funds transfers from the central EU budget. This rule gives rise to a regression-discontinuity design that exploits the discrete jump in the probability of EU transfer receipt at the 75% threshold. Additional variability arises for smaller regional aggregates - so-called NUTS3 regions - which are nested in a NUTS2 mother region. Whereas some relatively rich NUTS3 regions may receive EU funds because their NUTS2 mother region qualifies, other relatively poor NUTS3 regions may not receive EU funds because their NUTS2 mother region does not qualify. We find positive growth effects of Objective 1 funds, but no employment effects. A simple cost-benefit calculation suggests that Objective 1 transfers are not only effective, but also cost-efficient

    Solitonic-exchange mechanism of surface~diffusion

    Full text link
    We study surface diffusion in the framework of a generalized Frenkel-Kontorova model with a nonconvex transverse degree of freedom. The model describes a lattice of atoms with a given concentration interacting by Morse-type forces, the lattice being subjected to a two-dimensional substrate potential which is periodic in one direction and nonconvex (Morse) in the transverse direction. The results are used to describe the complicated exchange-mediated diffusion mechanism recently observed in MD simulations [J.E. Black and Zeng-Ju Tian, Phys. Rev. Lett. {\bf 71}, 2445-2448(1993)].Comment: 22 Revtex pages, 9 figures to appear in Phys. Rev.

    Transcription and translation of human F11R gene are required for an initial step of atherogenesis induced by inflammatory cytokines

    Get PDF
    <p>Abstract</p> <p>Background -</p> <p>The F11 Receptor (F11R; aka JAM-A, JAM-1) is a cell adhesion protein present constitutively on the membrane surface of circulating platelets and within tight junctions of endothelial cells (ECs). Previous reports demonstrated that exposure of ECs to pro-inflammatory cytokines causes insertion of F11R molecules into the luminal surface of ECs, ensuing with homologous interactions between F11R molecules of platelets and ECs, and a resultant adhesion of platelets to the inflamed ECs. The main new finding of the present report is that the first step in this chain of events is the <it>de-novo </it>transcription and translation of F11R molecules, induced in ECs by exposure to inflammatory cytokines.</p> <p>Methods -</p> <p>The experimental approach utilized isolated, washed human platelet suspensions and cultured human venous endothelial cells (HUVEC) and human arterial endothelial cells (HAEC) exposed to the proinflammatory cytokines TNF-alpha and/or IFN-gamma, for examination of the ability of human platelets to adhere to the inflamed ECs thru the F11R. Our strategy was based on testing the effects of the following inhibitors on this activity: general mRNA synthesis inhibitors, inhibitors of the NF-kappaB and JAK/STAT pathways, and small interfering F11R-mRNA (siRNAs) to specifically silence the F11R gene.</p> <p>Results -</p> <p>Treatment of inflamed ECs with the inhibitors actinomycin, parthenolide or with AG-480 resulted in complete blockade of F11R- mRNA expression, indicating the involvement of NF-kappaB and JAK/STAT pathways in this induction. Transfection of ECs with F11R siRNAs caused complete inhibition of the cytokine-induced upregulation of F11R mRNA and inhibition of detection of the newly- translated F11R molecules in cytokine-inflamed ECs. The functional consequence of the inhibition of F11R transcription and translation was the significant blockade of the adhesion of human platelets to inflamed ECs.</p> <p>Conclusion -</p> <p>These results prove that <it>de novo </it>synthesis of F11R in ECs is required for the adhesion of platelets to inflamed ECs. Because platelet adhesion to an inflamed endothelium is crucial for plaque formation in non-denuded blood vessels, we conclude that the <it>de-novo </it>translation of F11R is a crucial early step in the initiation of atherogenesis, leading to atherosclerosis, heart attacks and stroke.</p

    Mounding Instability and Incoherent Surface Kinetics

    Full text link
    Mounding instability in a conserved growth from vapor is analysed within the framework of adatom kinetics on the growing surface. The analysis shows that depending on the local structure on the surface, kinetics of adatoms may vary, leading to disjoint regions in the sense of a continuum description. This is manifested particularly under the conditions of instability. Mounds grow on these disjoint regions and their lateral growth is governed by the flux of adatoms hopping across the steps in the downward direction. Asymptotically ln(t) dependence is expected in 1+1- dimensions. Simulation results confirm the prediction. Growth in 2+1- dimensions is also discussed.Comment: 4 pages, 4 figure

    Morphology of ledge patterns during step flow growth of metal surfaces vicinal to fcc(001)

    Get PDF
    The morphological development of step edge patterns in the presence of meandering instability during step flow growth is studied by simulations and numerical integration of a continuum model. It is demonstrated that the kink Ehrlich-Schwoebel barrier responsible for the instability leads to an invariant shape of the step profiles. The step morphologies change with increasing coverage from a somewhat triangular shape to a more flat, invariant steady state form. The average pattern shape extracted from the simulations is shown to be in good agreement with that obtained from numerical integration of the continuum theory.Comment: 4 pages, 4 figures, RevTeX 3, submitted to Phys. Rev.
    corecore