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Abstract

Researchers often estimate average treatment effects of programs without
investigating heterogeneity across units. Yet, individuals, firms, regions, or
countries vary in their ability, e.g., to utilize transfers. We analyze Objec-
tive 1 Structural Funds transfers of the European Commission to regions of
EU member states below a certain income level by way of a regression dis-
continuity design with systematically heterogeneous treatment effects. Only
about 30% and 21% of the regions – those with sufficient human capital and
good-enough institutions – are able to turn transfers into faster per-capita
income growth and per-capita investment. In general, the variance of the
treatment effect is much bigger than its mean.
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1 Introduction

All developed countries use transfers to individuals, firms, or regions to stimulate
a change in their behavior or their performance. A prominent example of such
transfers is aid in a very broad sense. Transfers may be used as a mere means of
redistribution at the level of individuals (possibly but not necessarily with a change
in behavior in mind).1 At the level of firms, regions, or countries, transfers tend
to be used to stimulate recipient units’ performance (employment, investment, and
growth), at least in the medium run.

A significant literature in applied econometrics is concerned with the ex-post
estimation of the causal effects of such transfers or programs with non-random as-
signment. Related work tends to focus on data where treatment assignment is cap-
tured by a binary indicator variable and the single parameter of interest measures
an average treatment effect (ATE). We argue that units and their responsiveness to
transfer treatment vary systematically so that a focus on the ATE alone conceals
important information to both the econometrician and the policy maker.

With regions or countries, transfers are often aimed at fostering investment and,
ultimately, economic growth. Examples of such transfers are un-tied aid programs
administered by the World Bank through the International Bank for Regional Devel-
opment, the European Bank for Regional Development at the international level, or
the European Union’s (EU) transfers across regions of the Union’s member countries.
While the justification for and the effectiveness of aid programs is hotly debated,2

the literature seems to agree that key factors that undermine the goal of aid trans-
fers are low levels of education and bad institutions (such as corrupt politicians, bad
administrations, etc.).3 In broad terms, we refer to human capital and quality of
institutions as two dimensions of absorptive capacity with regard to rendering trans-
fers effective.4 Hence, our concept of absorptive capacity refers on the one hand to

1E.g., a negative income tax may be used as a transfer of the former kind and a training program
as a transfer of the latter kind.

2For instance, see Dalgaard, Hansen, and Tarp (2004) who argue in favor of an aid-growth link,
and Easterly (2003) who questions the effectiveness of aid with respect to economic growth.

3Already early work on the effects of aid transfers pointed to the role of education and skills for
the responsiveness of countries to such transfers (Rosenstein-Rodan, 1961; Chenery and Strout,
1966; see Chauvet and Guillaumont, 2004, for a more recent argument along those lines). The direct
link between political institutions, aid transfers, and economic growth is addressed in Burnside and
Dollar (2000, 2004).

4In general, human capital (see Mankiw, Romer, and Weil, 1992; Benhabib and Spiegel, 1994;
and Becker, Hornung, and Woessmann, 2011) and good institutions (see Mauro, 1995; and Ace-
moglu, Johnson, and Robinson, 2005) have been found to stimulate economic growth and catch-up
of lagging-behind countries or regions per se. The arguments made and evidence provided by
Rosenstein-Rodan (1961), Chenery and Strout (1966), Burnside and Dollar (2000, 2004), and
Chauvet and Guillaumont (2004) suggests that absorptive capacity is also important for transfers
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the ability of employing transfers in the most productive way by having a sufficient
level of human capital and on the other hand to the ability of allocating funds in an
efficient way, which is facilitated by a high quality of institutions.

While most of the arguments along those lines are made in the context of inter-
national aid, they also apply for sub-national aid flows among relatively homoge-
neous countries within the European Union: bad institutions are often mentioned
as one reason for why regional transfers are not as effective as they could be,5 and
through capital-skill complementarity a lack of skilled workers in some recipient re-
gions should be considered an important source of lower returns on investment in
such regions (see Duffy, Papageorgiou, and Perez-Sebastian, 2004). However, while
there is no debate about the qualitative importance of institutions and education
not only for economic prosperity but also for returns on investment and transfers,
little is known about the quantitative relevance of these factors for the response of
investment and economic growth to transfers. Yet, for policy makers the latter is
crucial with aid programs and transfers that operate under budget constraints and
with tax payers calling their effectiveness into question.

The notion that the responses to fiscal policy at large may be heterogeneous
is at the heart of a recent literature at the interface of macroeconomics and public
finance. In broad terms, two strands of such research may be distinguished. One line
of research on heterogeneous responses to fiscal stimuli supports the view that effects
on the same recipients of identical stimuli vary over time. For instance, Auerbach
and Gorodnichenko (2010, 2011) provide evidence of state-dependent magnitudes
of fiscal multipliers. While there is evidence of a positive effect of fiscal multipliers
over the long run (see Gemmell, Kneller, and Sanz, 2011; Ramey, 2011), Auerbach
and Gorodnichenko’s (2010, 2011) findings suggest that effects can vary significantly
over the business cycle. Another line of research on heterogeneous responses to fiscal
stimuli – which is more closely related to this paper’s agenda – supports the view
that effects in the same period and of identical stimuli vary across recipients. For
instance, Suárez Serrato and Wingender (2011) exploit variation across US counties
in receipt of US federal grants that depend on local population levels to estimate local
fiscal multipliers. They find heterogeneity of the impact of government spending
with a higher impact in low-growth regions in comparison to high-growth regions.
Shoag (2011) uses variation in portfolio returns of defined-benefit pension plans –
for which state governments bear the investment risk – across US states to identify
the effect of state government spending on in-state income and employment. He
detects heterogeneity in that the effect is stronger in non-tradable industries (and,
consequently, in states which are relatively specialized on such industries) and when

to be used productively by recipients.
5For instance, bad institutions in Greece are deemed responsible for the lack of exhaustion of

budgeted transfers (Pisani-Ferry, Marzinotto, and Wolff, 2011).

3



and where economic activity is low.6

This paper is devoted to a quantitative analysis of the heterogeneity of the treat-
ment effect of the EU’s main regional transfer program. The European Commission
takes a number of initiatives to foster per-capita income growth and convergence.
Such initiatives are subsumed under two major funding programmes: the Structural
Funds – which are composed of the European Regional Development Fund (ERDF)
and the European Social Fund – and the Cohesion Fund. We focus on the biggest
among all initiatives, referred to as Objective 1, whose goal is to provide transfers
to the poorest regions of the EU to foster their catch-up towards the EU average.
Eligibility for Objective 1 transfers is associated with a discontinuity about GDP
per-capita: only regions whose per-capita income (in purchasing power parity) falls
short of 75% of the EU average prior to a programming (or budgetary) period are
eligible for such transfers during that period.7 The regional entities which may claim
eligibility are so-called NUTS2 regions.8 The goal of this study is to identify the
magnitude at which the effect of Objective 1 treatment on investment and economic
growth varies with the quality of institutions and the level of education across re-
gions by using the discontinuity in per-capita income for treatment eligibility as an
identification strategy in a regression discontinuity design (RDD). Commonly used
RDDs ignore treatment effect heterogeneity in the neighborhood of the threshold
and focus on a single local average treatment effect (LATE). By way of contrast,
we extend that concept to the case of heterogeneous local average treatment effects
(HLATE). In particular, we wish to infer how the treatment effect of Objective 1 re-
gional transfers varies with the quality of government and the level of human capital
– which we interpret as measures of absorptive capacity – of targeted regions. The
latter allows us to inform policy makers about the extent of the variability of the
treatment effect, about reasonable options of redistribution with minimal costs in
regions from which and maximal effects in regions whereto funds are redistributed,
and about the magnitude of foregone growth stimuli associated with the currently
applied scheme.

The paper contributes to two literatures. First, it formulates a flexible RDD
which is applicable with fixed but arbitrary numbers of forcing variables (determin-

6While Suárez Serrato and Wingender (2011) as well as Shoag (2011) rely on instrumental
variable approaches, we use a regression discontinuity design, since the European Union’s transfer
scheme gives rise to a discontinuity of transfer eligibility depending on regional per-capita GDP,
as will become clear later.

7Programming periods in EU jargon last for 5 to 7 years. The three most recent Programming
periods were 1989-1993, 1994-1999 and 2000-2006. Eligibility is determined in pre-specified years
prior to a programming period.

8NUTS is the acronym for N omenclature des U nités Territoriales S tatistiques coined by Euro-
stat, the Statistical Office of the EU, which refers to regional aggregates. NUTS2 regions correspond
to groups of counties and unitary authorities with a population of 0.8-3 million inhabitants.
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ing treatment eligibility) and fixed but arbitrary numbers of variables the treatment
effect varies with. For such designs, we formulate an RDD for the HLATE and
illustrate that nonparametric estimators work comparatively well relative to para-
metric estimators of the multivariate control function, even in small to medium-sized
samples. Obviously, with regional per-capita income levels prior to a programming
period as one forcing (threshold) variable and Objective 1 treatment interaction with
institutional quality and the level of education, the application of interest here is a
special case of that general design. Second, with regard to the literature on effects
of transfer treatment – such as national or regional aid, of which EU Objective 1
transfers are a prominent example – we shed light on the quantitative importance
of institutions and education for the treatment effect heterogeneity on economic
outcomes such as per-capita investment and per-capita income growth.

The empirical application to the EU’s Objective 1 transfer treatment reveals a
great variability of the effect with institutional quality and the level of education.
Not only regions but also countries vary substantially with regard to the institutional
quality and education level of their NUTS2 regions. This leads to a significant
variability of the magnitude of treatment responses not only across regions within
countries but also across member countries of the EU. We find that the HLATE
is positive at a confidence bound of at least 90% for not more than 21% of the
regions with per-capita investment and for 30% of the regions with per-capita income
growth. Hence, at that level of statistical significance, politicians could redistribute
funds from 140 and 157 regions, respectively, and benefit some regions’ investment
and growth without harming other regions. Hence, we find that a minimal level
of institutional quality and education is necessary for recipient regions to absorb
transfers effectively.

The remainder of the paper is organized as follows. In the next section, we outline
the econometric model with RDDs for the HLATE in general terms. An Appendix
provides evidence on the small sample performance in terms of bias and root mean
squared error for identification of the HLATE in the distribution of treatment effects
with nonparametric versus parametric control functions. In Section 3, we summarize
features of the EU’s Objective 1 transfer program. In Section 4, we estimate the
HLATE based on an RDD with data on all NUTS2 regions of 25 EU countries
and evaluate the role of institutional quality and the level of education for the
effectiveness of Objective 1 transfers for regional investment and economic growth.
Section 5 concludes with a summary of our main findings.
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2 RDD for heterogeneous treatment effects

Our focus is on identification of heterogeneous treatment effects with an RDD where
the heterogeneity of treatment effects pertains to interactions with exogenous ob-
servable variables.9 A standard fuzzy RDD, which contains the sharp RDD as a
limiting case, exploits discontinuities in the probability of treatment conditional on
one forcing variable. The result is a research design where the rule giving rise to the
discontinuity becomes an instrumental variable for the actual treatment status. In a
fuzzy RDD, one can identify a local average treatment effect (LATE) in the sense of
Imbens and Angrist (1994). The LATE is the average treatment effect for compliers,
i.e., those treated who take the treatment only when eligible, but do not get treated
when ineligible. Our aim is to employ estimators, where the estimated treatment
effect is not (only) local in the sense of being a LATE, but local and heterogeneous
in the sense that it is allowed to vary with a fixed but arbitrary number of observ-
ables. Accordingly, we refer to this as a heterogeneous local average treatment effect
(HLATE). We will allow heterogeneity of treatment effects to vary with variables
that do or do not influence treatment status. Moreover, for the sake of generality,
we will consider the case of a fixed but arbitrary number of forcing variables (and,
hence, discontinuities at potentially more than one treatment threshold) as well as
a fixed but arbitrary number of exogenous variables interacting with the treatment
effect. Angrist and Fernandez-Val (2010) analyze heterogeneity in local average
treatment effects that is caused by instrument-specific compliant subpopulations.
They show that differences in observables can be used to explain the heterogeneity
of LATE when using different instruments. In Angrist and Fernandez-Val (2010) dif-
ferent instruments yield different experiments the treatment effect is identified from,
whereas our approach rests on one instrument and accordingly one set of compli-
ers. An implicit assumption of our estimation strategy is that the distribution of
compliers is not affected by the interaction variables. This seems justified since,
in our application, we find no systematic correlation between the misclassification
of observations according to the treatment rule and their measures of absorptive
capacity.

In the following, we outline parametric as well as nonparametric identification
strategies for the most general case with many forcing variables and many variables
affecting the treatment effects. Building on this, we compare the performance of

9The proposed estimators should not be interpreted as to support an unmotivated search for
significant treatment effects in subsamples of the data with different characteristics. Such a strategy
would involve well-known problems with multiple testing, resulting in an over-rejection of the null
hypothesis (of no treatment effect or no heterogeneity of the treatment effect; see Kling, Liebman,
and Katz, 2007). But rather, we propose estimators that are applicable where economic theory
suggests heterogeneity of a certain kind to materialize in the data.
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the derived estimators in Monte Carlo studies (see Appendix C) where we focus on
designs which permit graphical illustration.10

2.1 Definition of heterogeneous local average treatment ef-
fects (HLATE)

Let us use the following notation. First, use Ti to denote a treatment indicator which
is equal to one if treatment is received by unit i and zero otherwise. Outcome yi is
a function of the treatment, of the 1 ×K vector xi of forcing variables, and of the
1× L vector zi of interaction variables that render treatment more or less effective
but do not affect treatment assignment. We seek to estimate the heterogeneous local
average treatment effect

HLATE(xi = x0, zi) = HLATE(x0, zi) = E[y1i|x0, zi]− E[y0i|x0, zi], (1)

where y1i denotes the outcome with treatment and y0i the outcome without treat-
ment, and x0 denotes the 1 × K vector of threshold values x0k for the K forcing
variables with k = 1, ..., K.

The challenge for treatment evaluation arises because we observe each unit i
only in one of two mutually exclusive states of the world, either with or without
treatment, and treatment assignment is not random but depends on the information
in xi. In contrast to the commonly identified local average treatment effect (LATE),
the HLATE above allows for variation in the dimensions of zi. This flexibility is
particularly valuable as in many cases where the LATE is not different from zero,
the HLATE may vary substantially around the LATE.

In the RDD, the treatment probability is a discontinuous function of the forcing
variables

P (Ti = 1|xi) =

{
g1(xi) if xik ≥ x0k ∀ k ∈ K
g0(xi) otherwise.

(2)

The literature distinguishes two types of RDD: the sharp design where g1(x0) −
g0(x0) = 1 and the fuzzy design where 0 < g1(x0) − g0(x0) < 1. Accordingly,
in the sharp design, the treatment probability jumps from zero to one once all K
treatment rules are satisfied while the probability jump is less than one in the fuzzy
design where treatment assignment is noisy due to exemptions from the rules.

Regardless of whether a sharp or a fuzzy design prevails, the HLATE can be
estimated parametrically or nonparametrically under the following assumptions:

10Obviously, with more than two variables enforcing treatment status or co-determining treat-
ment effects, graphical illustration becomes difficult. Specifically, we will illustrate two scenarios in
the Appendix: a 1-way threshold scenario where the forcing variable is independent of the variable
that interacts with the treatment effect, and a 2-way threshold scenario with two forcing variables,
one of which is allowed to simultaneously affect the magnitude of treatment effects.
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Assumption 1 (Continuity of counterfactual outcomes at threshold vector.)
E[y0] and E[y1] are continuous at x0.

This is the standard identifying assumption in an RDD. It states that there
should not be any jump in other observable determinants of outcome beyond the
forcing variable.

Assumption 2 (Continuity of interaction variables at threshold vector.)
The interaction variables zi are continuous at x0.

This assumption is important for the HLATE to pick up genuine variation in
the interaction variables. In our application, we check this assumption by plotting
graphs for human capital and quality of government to see whether these measures
of absorptive capacity are discontinuous about the forcing variable at the threshold
or not (see Figure 2 below).

Assumption 3 (Random assignment of interaction variables zi conditional on xi.)
The interaction variables zi are uncorrelated with the error term in the outcome
equation, conditional on xi.

In the context of our application, this assumption states that, conditional on
GDP per capita (the forcing variable), regions with different human capital endow-
ments and quality of governance do not differ in unobserved dimensions which are
relevant for investment or per-capita income growth. Take the example of two re-
gions with the same pre-treatment level of GDP per capita that differ in their human
capital endowment. The fact that, despite different human capital endowment, they
achieved the same pre-treatment GDP per capita indicates that there were other
factors which, in the past, led the two regions to achieve the same pre-treatment level
of GDP per capita. For instance, regions in former communist countries with high
human capital endowments might have achieved the same (low) per-capita income as
some Western European regions with low human capital endowments. The omitted
factor would be the past experience of a communist system in place. Assumption 3
states that such other factors do not systematically contribute contemporaneously to
investment or economic growth. We address this particular concern in several ways:
first, we run fixed effects regressions (amongst others) which wipe out time-constant
factors such as past communist political system experience. Furthermore, we take
the absorptive capacity interaction variables as time-constant variables, so that the
HLATE picks up factors that facilitate or hinder the effective use of EU transfers
over longer horizons. Both human capital endowment and quality of government
are factors which hardly vary over time and are thus relatively stable attributes of
regions.
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In the following, we outline the estimation approaches formally, where the sharp
RDD can be understood as a special case of the fuzzy RDD with treatment assign-
ment being a deterministic function of the forcing variables while the fuzzy design
allows for some randomness in treatment assignment.

2.2 Parametric control function for identification of the HLATE

Assuming that E[yi|xi, zi] follows an additive process based on polynomial functions
of the columns of xi and zi we can write the conditional expected outcomes in the
counterfactual situations of treatment and non-treatment as follows:

E[y0i|xi, zi] = α + f0(x̃i) + h0(zi) (3)

E[y1i|xi, zi] = E[y0i|xi, zi] + β + f∗1(x̃i) + h∗1(zi), (4)

where f0(x̃i), h0(zi), f∗1(x̃i), and h∗1(zi) are sufficiently smooth polynomial functions
of the columns of xi and zi.

11 In order to simplify the interpretation of the coeffi-
cients, we define the parametric functions f0(·) and f∗1(·) in terms of deviations of
xik from the thresholds x0k and h0(·) and h∗1(·) in terms of deviations of zil from
the sample means E[zl]. Accordingly, x̃ik = xik − x0k and zil = zil −E[zl]. Overall,
we can then write

E[yi|xi, zi] = E[y0i|xi, zi] + Ti[β + f∗1(x̃i) + h∗1(zi)]. (5)

Using this notation, the local average treatment effect at the multidimensional
threshold level of the forcing variables, x0, is given by β. The heterogeneous treat-
ment effect for deviations from the sample means in the z-dimensions is measured
by HLATE(x0, zi) = β + h∗1(zi).

In the sharp RDD, where the treatment is a deterministic function of the set of
forcing variables, we can estimate the treatment effects by the following regression:

yi =α + f0(x̃i) + h0(zi) + Ti [β + f∗1(x̃i) + h∗1(zi)] + εi (6)

where Ti = 1(xik ≥ x0k ∀ k ∈ K). (7)

In the fuzzy RDD, even though the treatment probability jumps when crossing
the multidimensional threshold x0, as indicated in (2), Ti is no longer a determin-
istic function of x0. Hence, the identifying assumption of the sharp RDD in (7) is

11We use a notation where f∗1(·) ≡ f1(·) − f0(·) and h∗1(·) ≡ h1(·) − h0(·), and where f1(·) and
h1(·) in the treatment state are defined analogously to f0(·) and h0(·) in the no-treatment state.
More generally, one can also allow for interaction terms between columns of xi and zi and add
those interaction terms as additional elements in a (new) zi with larger column space. Hence,
we will not specifically address this issue. But we note that, in our application, all results are
robust to the introduction of interaction terms between (polynomials of) the forcing variable and
(polynomials of) the measures of absorptive capacity.
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violated. This requires us to specify some functional form for the conditional treat-
ment probability P (Ti = 1|xi). Let us define a scalar Ri = 1(xik ≥ x0k ∀ k ∈ K)
indicating whether all rules underlying the treatment status are fulfilled or not.
When g1(xi) and g0(xi) in (2) can be approximated sufficiently well, Ri may serve
as an instrument for P (Ti = 1|xi) conditional on g1(xi) and g0(xi). Using analogous
notation as for the outcome, we may determine g0(x̃i), g∗1(x̃i) ≡ g1(x̃i) − g0(x̃i),
l0(zi), l∗1(zi) ≡ l1(zi) − l0(zi). In the first stage of the 2SLS implementation of the
fuzzy RDD we estimate:12

Ti =g0(x̃i) + l0(zi) +Ri[δ + g∗1(x̃i) + l∗1(zi)] + νi. (8)

The forcing variables are again measured in terms of deviations from the respective
thresholds. Substituting (8) for the treatment indicator Ti in (6) we obtain the
reduced form for the fuzzy RDD. Equations (6) and (8) together constitute the IV
estimator of the HLATE(x0, zi).

2.3 Nonparametric control function for identification of the
HLATE

The parametric estimates of the treatment effects rely on the validity of the approx-
imations f0(·), f∗1(·), h0(·), h∗1(·), g0(·), g∗1(·), l0(·), and l∗1(·). As has been shown by
Hahn, Todd, and van der Klaauw (2001), average treatment effects can be identified
nonparametrically under much weaker assumptions (basically continuity restrictions
only). This section introduces the nonparametric approach to the estimation of the
HLATE.

In a standard RDD with one forcing variable, where xi is a scalar and zi is
absent from the model, identification and consistent estimation of the LATE hinges
upon estimation of E[yi|xi]. In the more general design analyzed here, we have to
estimate E[yi|xi, zi] in the neighborhood of the multidimensional discontinuity. It
can be shown that the HLATE at the multidimensional threshold is given by (see
Appendix A for a proof):

HLATE(x0, zi) = lim
∆→0

E[yi|0 < x̃i < ∆, zi]− E[yi| −∆ < x̃i < 0, zi]

E[Ti = 1|0 < x̃i < ∆, zi]− E[Ti = 1| −∆ < x̃i < 0, zi]
, (9)

where ∆ denotes a vector of some small, positive deviations from zero. In the sharp
RDD the denominator in (9) is simply unity whereas it ranges between zero and one
in the fuzzy RDD.

12Alternatively, the first stage may be estimated by a nonlinear model. In our application, the
results remain unaffected by the choice of a linear or nonlinear first stage.
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As pointed out by Hahn, Todd, and van der Klaauw (2001), standard kernel esti-
mators for the above conditional expectations to the left and the right of the thresh-
old yield biased estimates for the treatment effects due to their adverse boundary
properties. At boundary points the kernel estimators have a slower rate of conver-
gence than at interior points. Therefore, Hahn, Todd, and van der Klaauw (2001)
propose using local linear regressions instead of standard kernel estimates. In our
case with multiple interaction and forcing variables we resort to multivariate local
polynomial regressions as introduced by Ruppert and Wand (1994).

Let us collect all columns in x̃i and in zi in the vector ξi. The first K columns
of ξi belong to the columns of x̃i and the second L columns belong to zi. We aim
at estimating the expectations of yi in the neighborhood of the multidimensional
threshold for given values of zi. Hence, we fit a polynomial in the neighborhood of
a vector x̃i = 0. The local linear estimator for lim∆→0E[yi|0 < x̃i < ∆, zi] is given
by:

min
b0,b1

N∑
i=1

{yi − b0 − bT1 ξi}2KH(ξi) ∗ 1(x̃i > 0), (10)

where KH represents a kernel function with bandwidth matrix H. In our appli-
cations, we generally use a uniform kernel. For further details on the use of local
polynomial regressions we refer to Härdle, Müller, Sperlich, and Werwatz (2004).
HLATE(x0, zi) is asymptotically normally distributed as shown in Appendix B.

3 The EU Objective 1 transfer program

Objective 1 funds are one of the biggest expenditure items in the EU budget. They
are of particular interest to understand the role of regional transfers for regional
investment and growth in Europe, because their explicit aim is to foster investment
and per-capita income growth in regions that are lagging behind the EU average
and of promoting aggregate growth in the EU (European Commission, 2001). Ob-
jective 1 funds are part of the EU’s Structural Funds Programme which in turn
is the second-largest budget item alongside agricultural expenditure. Within the
Structural Funds Programme budget, Objective 1 transfers are by far the largest
item in all of the last three so-called programming periods: accounting for 70%
of the budget in the 1989-93 period, for 68% in the 1994-99 period, and for 72%
in the 2000-06 period (see European Commission, 1997, p. 154 f., and European
Commission, 2007, p. 202).

Eligibility for Objective 1 transfers is associated with a discontinuity in real GDP
per-capita levels: only regions whose per-capita income (in purchasing power parity)
is below 75% of the EU average prior to a programming period are eligible for such
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transfers. Eligibility is determined in pre-specified years prior to a programming
period. The regional entities which may claim eligibility are NUTS2 regions as
described above. If the 75%-rule were strictly followed by the EU authorities, there
should be perfect compliance, giving rise to a sharp regression discontinuity design.
However, some regions that are not formally eligible end up receiving Objective 1
funds and some regions that are eligible do not receive Objective 1 funds. Whereas
the reasons for the former might have to do with EU power politics, i.e., some regions
negotiating exceptions from the rule, the latter is surprising at first. Measurement
error about per-capita income is the main explanation for that: the regional GDP
figures that national statistical agencies report to Eurostat may be inaccurate (or
even not available at all) at the time eligibility for funding is determined and might
later be revised by Eurostat with no effect on foregone funding. In our data, which
are revised GDP figures available from Cambridge Econometrics, some regions are
below the 75% threshold ex post, but they were not at the time the EU Commission
had to decide on eligibility. For instance, the United Kingdom did not deliver
GDP data at the required NUTS2-level to the European Commission at the time
Objective 1 status was determined in the programming period 1989-93. Only ex
post, when the data became available, it turned out that some British NUTS2
regions should have been eligible for Objective 1 funds.

Non-compliance is an issue in 7% of observations, i.e., the design is not quite
sharp but fuzzy. In the fuzzy design, the 75%-rule serves as an instrument for actual
Objective 1 treatment. In previous work, we have analyzed the LATE of Objective 1
transfers on regional economic growth and found that they had a positive average ef-
fect (Becker, Egger, von Ehrlich 2010). The present paper goes substantially beyond
earlier work (including ours) on aggregate treatment effects of aid programs in gen-
eral and European regional redistribution programmes in specific. First, we provide
evidence that the main effect of the Objective 1 programme on economic growth
runs through investment (as intended). Second, we provide evidence of substantial
heterogeneity of the LATE in terms of education of the population and institutional
quality (our two measures of absorptive capacity). The latter seems particularly
important if programmes operate under budget constraints and funding reductions
have to be implemented. The method proposed and the evidence provided may
assist policy makers in redistributing funds in a way so that detrimental effects on
investment and economic growth are minimized while keeping budgetary discipline.
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4 The HLATE of EU Objective 1 transfers de-

pending on absorptive capacity

In this section, we provide parametric and nonparametric estimates of the HLATE
of Objective 1 treatment on regional per-capita investment and regional growth
of per-capita income in the EU. The heterogeneity of the response to Objective 1
treatment is modeled as a function of human capital endowments and/or the quality
of regional government as two measures of absorptive capacity.

4.1 Data and descriptive evidence

We use data on NUTS2 regions for the last three completed EU programming pe-
riods: 1989-93, 1994-99, and 2000-06. Due to enlargements of the EU during the
observation period, the number of NUTS2 regions covered varies between 186 and
251 per period. Hence, a regional unit may be observed in the data once, twice, or
thrice. Of course, repeated observation of cross-sectional units should be respected
in estimation either by clustering of standard errors or alternative treatment of fixed
region-specific effects. For instance, the standard errors of HLATE should be block-
bootstrapped (across all years; see Fitzenberger, 1998; and Becker and Egger, 2011,
for an application).13

For the question of interest, we utilize four types of data from different sources.
First, information on NUTS2 regional per-capita GDP at purchasing power parity
(PPP) is available from the Regional Database compiled by Cambridge Economet-
rics. The corresponding data can be utilized to calculate the level of regional aver-
age per-capita income in the years specified by the European Commission prior to
each programming period – the forcing variable for Objective 1 treatment eligibility.
NUTS2 regions whose per-capita GDP fell short of 75% of the EU average were
eligible to receive Objective 1 funds from the EU. The same regional GDP data can
be employed to determine average annual growth of per-capita income in PPP terms
during a programming period.

Second, information about actual Objective 1 treatment is available directly from
the European Commission, from various Council Regulations, in particular the Reg-
ulations numbered 2052/88, 2082/93, and 502/1999, and in editions of the Official
Journal. The data show that there is a discrepancy between the rule and actual
treatment, which establishes a fuzziness: about 7% of the data points represent
non-compliers with the 75% assignment rule.

13In general, this strategy is consistent with the proposal of Anderson (2008, p. 1483f.) to use
sampled standard errors instead of Huber-White standard errors in contexts such as ours.
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Third, we use two conceptual measures of absorptive capacity at the regional
level, human capital endowments and quality of regional government. We employ
data on the level of education of the workforce in a region from the European Union
Labour Force Survey. More specifically, we utilize data on the share of workers with
at least secondary education and allow the response to Objective 1 treatment to
vary with it.14 In a sensitivity analysis, we employ data from the European Values
Study (initiated by the European Values Systems Study Group, EVSSG) for the
years 1981, 1990, and 1999, to obtain an alternative, complete panel data-set of
human capital endowment through interpolation. Appendix E provides details on
the construction of time-variant measures of absorptive capacity.

Data on the regional quality of government (QoG) come from various sources. On
the one hand, we employ time-invariant data from Charron, Lapuente, and Dykstra
(2011). They use a perception-based indicator of QoG based on a 34,000-respondents
survey. Their data-set is available for download and contains information at the na-
tional level for all 27 EU countries and, at the sub-national level, for 172 NUTS
1 and NUTS 2 regions in the European Union for the year 2009.15 The variable
is standardized within the EU (mean of 0 and standard deviation of 1), such that
higher scores equal higher levels of QoG. The QoG index is based on 16 separate
survey questions pertaining to three key public services – education, health care,
and law enforcement. The respondents were asked to rate their public services with
respect to three related concepts of QoG – the quality, impartiality, and level of cor-
ruption of the above-mentioned services. Even though the institutional framework
is determined to a large extent on the national level, our survey data shows that the
implementation of the legal, the education or the health care system varies substan-
tially across regions within countries. Prominent examples for large within country
differences in government and administration are Northern and Southern Italy or
Flanders and Wallonia in Belgium. Charron, Lapuente, and Dykstra (2011) point

14Eurostat delivered NUTS2-level data on education of the workforce for the years 1999 through
2008. Education is measured in three categories, based on UNESCO’s International Standard
Classification of Education (ISCED): low education refers to ISCED categories 0-2. Medium edu-
cation refers to ISCED categories 3 and 4, and high education to ISCED categories 5 and 6. Our
measure of (at least) upper-secondary education includes ISCED categories 3 to 6. In our sample
of NUTS2 EU regions, the correlation coefficient between the share of the work force with at least
upper-secondary education in 1999 and in 2008 is 0.91, which shows the stability of human capital
endowment over time and makes it an interesting stable measure of the absorptive capacity of a
region. The data on human capital represent an (in time) unequally spaced panel. For the baseline
regressions, we averaged human capital for each region across the years.

15Countries with NUTS 1 level information are Belgium, Germany, Greece, Hungary, Nether-
lands, Sweden, and United Kingdom. NUTS2 level information is available for Austria, Bulgaria,
Czech Republic, Denmark, France, Italy, Poland, Portugal, Slovak Republic, Romania, and Spain.
We assume that quality of government is at least as time invariant as human capital endowment.
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out that the difference in QoG is more pronounced between the two Italian regions
Bolzano and Campania than it is between the national averages of Denmark and
Portugal. For a sensitivity analysis we extend our study to a time-variant measure
of QoG which we construct from Eurobarometer Survey information.16,17

Summary statistics for all variables used in our application are provided in Table
1. As suggested in Section 2, we measure absorptive capacity variables – human
capital (HC) and quality of government (QoG) – as deviations from the sample
mean. The forcing variable corresponds to average GDP per capita in the threshold
years that were crucial to assigning eligibility for Objective 1 transfers. Table 1
reports per-capita income in the threshold years in absolute terms and as a fraction of
average EU per-capita income. The Objective 1 binary treatment variable indicates
transfer recipience. GDP per capita growth is measured in nominal terms in the
average year of the budgetary period and represents together with the per-capita
investment levels – measured in logarithmic terms – our outcome of interest.

– Table 1 –

In terms of specification, our model corresponds to the parametric or nonpara-
metric case of a 1-way treatment threshold (in the forcing variable GDP per capita
relative to the EU average) in Section 2 and an interaction with one or two regressors.
In fact, we present results separately for three cases: (a) HC as the only indicator of
absorptive capacity; (b) QoG as the only indicator of absorptive capacity; (c) both
HC and QoG as indicators of absorptive capacity which matter simultaneously. A
difference with respect to the Monte Carlo analysis in Appendix C lies in the use of
repeated observations of cross-sectional units which we allow for in order to exploit
variability in the data (taking account of repeated observations in the computation
of standard errors throughout).

16For this, in particular, we use data from the Mannheim Panel 1970-2002 of the Eurobarometer
Survey for the EU15 NUTS2 regions and the original Eurobarometer Survey data for the year
2003 and the New Member Countries’ NUTS2 regions of the so-called Eastern Enlargement of the
EU in 2004. The variables (scores) used from this survey are Satisfaction with Democracy and
Satisfaction with Rule of Law. In order to gain a unique measure of quality of government, we
regress the time-invariant measure by Charron, Lapuente, and Dykstra (2011) on these scores and
predict (extrapolate) it for all years covered. See Appendix E for more details.

17As an alternative to QoG we considered the impact of social capital (SC), based on data about
the voter turnout regarding European Parliamentary elections at the NUTS2 level (from various
sources). We find a similar qualitative impact of SC on the effectiveness of Objective 1 transfers
as of QoG. However, we suppress these results here for two reasons, namely for the sake of brevity
and because QoG appears to be a more direct measure of the quality of institutions than voter
turnout. In any case, results on the role of SC for the responsiveness to Objective 1 transfers are
available from the authors upon request.
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– Figure 1 and 2 –

Before turning to regressions, it is useful to have a look at the raw data when
pooling them across all three programming periods. Figure 1 depicts the fraction of
treated observations against their initial per-capita GDP relative to the EU average
– in bins of a width of 1.5 percentage points in the forcing variable – in the years
critical for determining Objective 1 eligibility. The discontinuity at 75% is evident,
but the design is fuzzy because a number of regions does not comply with the
treatment rule.

Such a discontinuity does not appear when plotting equivalent graphs for hu-
man capital and quality of government (see Figure 2). Note that this supports
Assumption 2 underlying the HLATE, which requires the interaction variables to be
continuous at the threshold(s) of the forcing variable(s).18

– Figure 3 and Figure 4 –

Unlike RDD plots for homogeneous LATE, the graphs in Figures 3 and 4 are
three-dimensional, similar to those shown in the Monte Carlo analysis in Appendix
C. They are useful to visualize the interaction between the forcing variable (initial
GDP per capita relative to the EU average in a period), the variables relating to
absorptive capacity (HC and QoG as deviations from the respective EU average),
and the outcome variables (GDP per capita growth and ln of per-capita investments,
respectively). Notice that these figures are generated for the subspace of values of HC
and QoG where we have relatively good support (see Figure 16 in the Appendix for
frequency plots of the data). Since the rule is not applied sharply by the Commission,
we expect both treated units (marked by red dots) and untreated units (marked by
blue dots) just above and below the threshold of the forcing variable (i.e., at a level of
0.75 or 75%). The surfaces are estimated by using 5th-order polynomial functions in
the forcing variable and linear functions of the absorptive capacity variables. These
surfaces are estimated separately for both sides of the threshold. The figure clearly
points to a continuous impact of the forcing variable on the outcome, and to a
discontinuity at the 75% threshold which in turn varies significantly with absorptive
capacity. The data indicate a smaller (or even non-existent) treatment effect at the
threshold for regions with below-average absorptive capacity and a higher treatment
effect for regions with above-average absorptive capacity. The wedges between the
two surfaces in the HC and QoG plots indicate heterogeneity of the LATE. Note,
however, that the HLATE cannot be directly “inferred” from the wedges in Figures

18See also Becker, Egger, and von Ehrlich (2010, Figure 4) for evidence on the absence of
discontinuities in other covariates, supporting Assumption 1.
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3 and 4. The wedges between the surfaces disregard fuzziness about Objective 1
status, i.e., the true treatment effect needs to take account of the size of the jump
in the treatment probability at the 75% threshold.

Hence, we proceed with parametric instrumental variable regression analysis and
with nonparametric regression analysis to avoid a bias of the heterogeneous treat-
ment effects accruing to fuzziness.

4.2 Regression results

A first step to scrutinize the heterogeneity of treatment effects displayed in Figures
3 and 4 is to split the sample into observations featuring below- and above-average
absorptive capacity and to estimate the LATE for each of these subsamples sepa-
rately using the fuzzy RDD estimator. Regarding the HC variable employed here,
we observe 336 observations with an above-average HC endowment and 310 obser-
vations below the average level of HC. The former group exhibits a LATE of about
1.1 percentage points for per-capita income growth which is significant at 5%. In
contrast, the LATE for per-capita income growth of the latter group amounts to
about 0.2 percentage points and is insignificant. With regard to per-capita invest-
ment both groups’ LATEs turn out insignificant at the usual levels of significance.
Regarding QoG, the 412 observations with an above-average level of QoG feature a
LATE of 2.4 percentage points for per-capita income growth – significant at 1% –
and one of 34 percent for per-capita investment – significant at 5%. The LATE for
the group of below-average QoG (228 obervations) turns out to be insignificant at
the usual levels of significance for per-capita income growth and negative for per-
capita investment. These first crude results point to a considerable heterogeneity of
treatment effects.

Yet, the split of the sample may be arbitrary and we loose substantive informa-
tion and efficiency by collapsing the two continuous measures of absorptive capacity
into binary indicators. A more efficient way of taking into account the heterogeneity
of the LATE is to follow the identification strategy for the HLATE as introduced
in Section 2. The corresponding regression results are summarized in Tables 2-3 for
parametric polynomial instrumental-variable regressions.19 Each of these tables is
organized horizontally in six columns and vertically in four blocs. The six columns
refer to 3rd-order, 4th-order, and 5th-order polynomial specifications of the control
function of the forcing variable with pooled OLS and fixed NUTS2 region-specific
effects each. The four vertical blocs pertain to results for per-capita income growth
(or per-capita investment levels) with time-invariant and time-invariant HC and,
alternatively, QoG interactions each. In these tables, we report only results for

19We present nonparametric regression results only graphically in order to save space.
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interactions of the Objective 1 treatment indicator with linear terms of HC and
QoG.20 In general, the main effect of Object 1 in Tables 2-3 roughly corresponds to
the LATE, since neither HC nor QoG display a discontinuity at the threshold of the
forcing variable (see Figure 2).

– Tables 2-3 –

In almost all specifications of Tables 2-3, both the main effect (LATE) of Ob-
jective 1 treatment and the interaction terms with HC and QoG are statistically
significant at conventional levels. This means that there is a positive response of
outcome – per-capita income growth and per-capita investment levels – to treatment
on average, and the response becomes bigger with better endowments of human
capital and better institutions.21 Moreover, we find comfort in the similarity of the
pooled OLS and the corresponding fixed effects results on the one hand and in the
results based on time-invariant HC or QoG and time-variant measures thereof on
the other hand. The former suggests that the RDD is powerful in removing the bias
of omitted but possibly confounding unobserved time-invariant variables, while the
latter suggests that reliance on time-invariant interacted variables (which are partly
measured at the end of the observation period) versus time-variant ones (which are
measured at the beginning of each programming period) does not induce a bias.
Tables 2-3 suggest two novel insights relative to earlier work.

First, there is evidence of a systematic heterogeneity of the response to Objec-
tive 1 treatment with regard to what we call absorptive capacity – measured by
HC and QoG. For instance, taking the pooled OLS specification with a 3rd-order
polynomial function of the forcing variable and time-invariant HC in Table 2 as the
benchmark, a region whose HC is raised by one standard deviation relative to the
average receives an Objective 1 HLATE which is 100 · 0.144 · 0.044 ∼= 0.63 percent-
age points higher than the average HLATE. Notice that such a statement would
not be possible with an approach where the sample is split ex ante into a high-HC
and a low-HC sub-sample. In comparison, a region whose QoG (time-invariant)
is raised by one standard deviation relative to the average receives an Objective 1
HLATE on per-capita income growth which is 100 · 0.815 · 0.005 ∼= 0.41 percentage
points higher per annum than the average HLATE. Hence, the responsiveness to
Objective 1 treatment is slightly more elastic in HC-space than in QoG-space.

20Results for higher polynomial specifications of the interactive variables are available from
the authors upon request. However, the more flexible polynomial specifications as well as the
nonparametric results reported below indicate that one may safely model the interactions linearly
without inducing much bias.

21The estimates of the LATE in Table 2 correspond quantitatively to the ones in Becker, Egger,
and von Ehrlich (2010).
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Second, the positive effect on per-capita income growth goes along with – and is
likely intermediated by – an effect on per-capita investment levels. The findings in
Table 3 suggest that Objective 1 transfers stimulate investment on net. Hence, more
investment is created than is eventually crowded out. Note that no such effects could
be detected for employment (or unemployment rates). Accordingly, the Objective 1
transfers stimulate a factor bias in growth: there is new net investment without a
short-to-medium-term effect on employment or unemployment.22 The pooled OLS
specification with a 3rd-order polynomial function of the forcing variable and time-
invariant HC as the benchmark in Table 3 suggest that a region whose HC is raised
by one standard deviation relative to the average receives an Objective 1 HLATE
on per-capita investment levels which is 100 · 0.144 · 0.793 ∼= 11.42% higher than the
average HLATE on ln of investment per capita. In comparison, a region whose QoG
(time-invariant) is raised by one standard deviation relative to the average receives
an Objective 1 HLATE on investment which is 100 · 0.815 · 0.153 ∼= 12.47% higher
than the average HLATE.

More detailed insights into the variability of the HLATE of HC or QoG on
per-capita income growth and per-capita investment levels can be gained from an
inspection of Figures 5-8. The four figures are organized in four panels each. The
two panels on the left-hand side of each figure are based on parametric 3rd-order
polynomial control functions about real per-capita income, and the two on the left-
hand side employ nonparametric control functions.23 The two panels at the top of
each figure are based on time-invariant interaction variables and the ones at the
bottom on time-variant counterparts. Figures 5 and 6 address estimates of the
HLATE for average annual per-capita income growth, while Figures 7 and 8 refer
to average log per-capita investment levels per annum as outcome.

– Figures 5-8 –

In general, the nonparametric estimates in Figures 5-8 display somewhat wider
confidence intervals than their parametric counterparts, as we would have expected
from the discussion in Section 2. As a consequence, the 90%-confidence intervals of
the parametric HLATE estimates are contained in the ones of their nonparametric
counterparts. The nonparametric HLATE functions are somewhat steeper in both
HC- and QoG-space than their parametric counterparts but not significantly so,

22Tables for employment and unemployment corresponding to Tables 2-3 are available from the
authors upon request but suppressed here for the sake of brevity. These tables clearly support the
aforementioned conclusions.

23In general, we follow Ludwig and Miller (2007), Imbens and Lemieux (2008), and Lee and
Lemieux (2010, p. 328) in choosing an optimal bandwidth based on the second-stage local linear
regression.
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and the HLATE functions are steeper in QoG-space than in HC, irrespective of
whether per-capita income growth or per-capita investment levels are considered as
the outcome. Many but not all of the panels suggest that the average HLATE (i.e.,
the LATE) is significantly different from zero. In particular, this is true for per-
capita investment levels as an outcome in Figures 7 and 8. However, it is important
to note that this result may be – and actually is – driven by the omission of the yet
other interaction term (HC in the QoG regressions and vice versa): notice that all
panels in Figures 5-8 average over a third dimension in the background. In a next
step, we will demonstrate that disentangling the role of HC and QoG for outcome
is important and reveals a complementary effect of these measures of absorptive
capacity.

– Table 4 and Figure 9 –

Table 4 provides parametric 3rd-order and 4th-order polynomial regression re-
sults with an integrated RDD model where the HLATE depends on both HC and
QoG simultaneously. For reasons of flexibility, we allow the interactive effect Ob-
ject 1×HC×QoG to be different where both HC and QoG are negative. Since HC
and QoG are correlated to some extent (with a correlation coefficient of 0.48), not
all parameters of interest can be estimated at high precision. However, the terms
involving HG and the ones involving QoG, respectively, are jointly significant at
conventional levels according to Wald tests. Indeed, this can be seen from an in-
spection of Figure 9. This figure displays the HLATE of Objective 1 treatment on
annual GDP per capita growth (in the top panel) and on investment per capita
levels (in the panel at the bottom) based on a 3rd-order parametric specification of
the control function.

Two remarks are in order for an interpretation of Figure 9. First, both panels
are three-dimensional plots with HC and QoG on the two horizontal axes and the
outcomes on the vertical axes and they involves four colors: red for a positive HLATE
and blue for a negative one with light and dark colors for statistically insignificant
and statistically significant HLATE point estimates at 10%, respectively.24 Second,
there is a kink at HC= 0 and QoG= 0 in the upper panel of the figure which relates to
the difference in coefficients for Object 1×HC×QoG (at HC≥ 0 or QoG≥ 0) and for
Object 1×HC×QoG×I (at HC< 0 and QoG< 0) in Table 4. Since the corresponding
coefficients are rather similar for per-capita investment levels as outcome, there is
no such discontinuity in the lower panel of the figure.

Figure 9 suggests that there is a minimal level of both HC and QoG necessary
for Objective 1 treatment to affect annual per-capita income growth and annual per-
capita investment levels positively. At too low a level of one or the other, there is

24The confidence bounds are generally block-bootstrapped with 500 replications.
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even a danger that Objective 1 treatment reduces the outcome, e.g., through crowd-
ing out of investment or of productive economic activity in general. The figure
indicates that positive per-capita income growth effects are achieved in a larger HG-
QoG-space than this is the case for per-capita investment levels. We may interpret
this finding as to suggest some crowding out of investment that would have taken
place also in the absence of Objective 1 treatment and of some consumption effects
of treatment without any net effects on investment. Notice that the figure sug-
gests that the HG-QoG space with positive (statistically significant or insignificant)
HLATEs is marginally larger than the one with negative HLATEs for per-capita
income growth while it is much smaller than the one with negative HLATEs for
per-capita investment levels. However, the size of the respective HG-QoG subspaces
per se is not as interesting without knowing where the data points on EU regions
are situated on the surface. The latter information is provided in Table 5 (see also
Figure 16 for the distribution of HC and QoG).

– Table 5

Table 5 provides information on the percentage of Objective 1 regions among
the EU member countries that received Objective 1 funds and had at the same
time sufficiently high levels of human capital and quality of government for realizing
positive treatment effects that are significantly different from zero according to the
reported confidence bounds. We report results for per-capita income growth in the
upper bloc and for per-capita investment levels in the lower bloc of the table and for
each country as well as the average economy. The table contains four columns with
percentages. The first one is based on a 90% confidence bound and, hence, reflects
the percentage of observations which are situated in the dark red areas in Figure 9.
The last column is based on the point estimates – disregarding the standard errors
– and reflects the percentage of observations which are situated in the dark-red and
light-red areas in Figure 9. The columns for 80% and 70% confidence intervals in
comparison to the remaining ones provide some evidence as to how close the data
points in the light-red area are located to the boundary between the light-red an
the dark-red areas in the corresponding panels of Figure 9.

Overall, the figure suggests that HG and QoG is higher in the richer economies
of the EU so that Objective 1 treatment is more likely to trigger a positive response
in outcome there than elsewhere. However, the intention of the program is to fos-
ter cohesion and stimulate investment mainly in regions which lag behind the EU
average. Such regions are mainly located in the poorer countries such as the new
member states joining the EU in the last programming period covered in this study
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(2000-06). Hence, let us compare and focus on these countries25 and on the cohesion
countries in the EU15 area26 in the discussion of Table 5. The table suggests that,
among the considered countries, only Estonia is well-enough endowed with HC and
QoG as to expect a positive income growth response to treatment even within the
90% confidence bound (the dark-red area in Figure 9) for all recipient regions in the
country. Even with a 70% confidence bound (i.e., a significance level of 15%), only
Estonia, Hungary, Ireland, Latvia, and Slovenia have a full coverage of their regions
among the considered economies with a positive HLATE at that significance level.
The last column in Table 5 suggests that a fair share of regions (in the light-blue and
dark-blue areas of Figure 9) is estimated to not respond positively to Objective 1
treatment at any significance level.

Of those regions that do experience a significant growth effect from Objective 1
funds, only a subgroup is estimated to respond via investments. At a 90% confidence
bound, only Objective 1 regions in Austria, Finland, Germany, the Netherlands,
Sweden, and in the United Kingdom display a significant and positive HLATE on
per capita investments. The remaining regions’ treatment effect seems to operate
via stimulated consumption which should generate only temporary income effects.
Accordingly, for these regions we are sceptical about whether the transfers will be
able to contribute to regional cohesion in the medium to long-run.

4.3 Policy considerations

The results provoke a number of alternative policy conclusions. Figure 9 suggests
that significantly positive effects of Objective 1 transfers are only to be had with suf-
ficiently high levels of human capital endowments (HC) and quality of government
(QoG). This is the case for only a fraction of the recipients (see Table 5). When
using a confidence bound of 90% as in the first column of Table 5, one could say
that the European Commission could save money by voiding Objective 1 transfers to
about 70% percent of the recipients (in the dark-blue, light-blue, and light-red areas
of Figure 9). For the most part, those regions belong in the group of least-developed
regions within the EU. By the same token, the Commission could stimulate further
growth by reallocating transfers from the just-mentioned 70% of the recipient re-
gions without any positive significant response to the remaining 30% ones (in the
dark-red area of Figure 9).27 Either measure would counteract the very purpose of

25The corresponding countries in the sample are: Czech Republic, Estonia, Hungary, Latvia,
Lithuania, Malta, Poland, Slovenia, Slovak Republic.

26These are: Greece, Ireland, Portugal, and Spain.
27Even when considering all regions in the light-red or dark-red areas of Figure 9 and, hence,

focusing on the point estimates in Table 5, the European Commission could be advised to reallocate
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the programme, though, which is reducing per-capita income gaps and stimulating
convergence from the tails towards the average within the European Union.

An alternative proposal would be to use funds at the Structural Programme in
a more discretionary fashion than at present and to target human capital formation
and the development of political as well as administrative institutions (quality of
government) in regions which are eligible for transfers. According to our findings,
such an approach would be largely complementary to other means of redistribution.
In terms of labels of initiatives at the level of the European Commission, this could
be seen as an argument in favor of strengthening and broadening efforts around
measures taken under the auspices of the Regional Competitiveness and Employment
Objective (formerly Objective 2) rather than the Convergence Objective (formerly
Objective 1). Of course, significant changes in the response to transfers induced by
such measures should not be expected to happen in the very short run. Both the
formation of human capital as well as institutional change take time – most likely
about one generation rather than a small number of years. But the returns on those
investments in terms of growth effects might be higher than ones on infrastructure
and other types of real investments to regions that lack complementary factors such
as skilled workers or high-quality institutions to realize the expected growth stimuli.

On a broader scale, the notion that fiscal policy induces heterogeneous responses
across recipients is consistent with recent findings on fiscal multiplier effects as men-
tioned in the introduction, in particular, findings relating to the cross-sectional het-
erogeneity of such effects. It is interesting to compare the results on transfer response
heterogeneity of EU regions with those on the heterogeneity of fiscal multiplier ef-
fects in US regions in Shoag (2011) and Suárez Serrato and Wingender (2011). The
results of both Shoag (2011) and Suárez Serrato and Wingender (2011) suggest that
the responsiveness to fiscal stimuli is better in low-growth (low-economic-activity)
regions. Our results complement those findings by suggesting that the availability
of human capital endowments and good institutions are crucial for recipients to
make productive use of transfers as was argued in earlier work on the effectiveness
of foreign aid at the level of countries.

5 Discussion and conclusions

This paper studies the role of absorptive capacity of regions in translating trans-
fers into in per-capita investments and income growth. In particular, we study
the importance of absorptive capacity for the treatment effect triggered by regional

transfers from 39% of the regions (in the light-blue and dark-blue areas of Figure 9) to the remaining
61% ones, if per-capita income growth was the Commission’s only goal.
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transfers under the auspices of Objective 1 under the Structural Funds Programme
of the European Commission. A region’s initial GDP per capita relative to the EU
average determines eligibility of NUTS regions in the European Union to receive
transfers out of the Structural Funds budget. Regions whose initial GDP per capita
is less than 75% of the EU average are eligible to receive Objective 1 funds. Econo-
metrically, this gives rise to a regression discontinuity design (RDD). To the extent
that a region’s absorptive capacity systematically influences how efficiently it uses
transfers received, we expect heterogeneity in local average treatment effects (LATE)
which varies with the recipient region’s absorptive capacity. We derive a heteroge-
neous LATE (HLATE) estimator for the general scenario with multiple thresholds
and various interaction variables that affect the treatment effect’s magnitude, and
we allow for a fuzzy treatment assignment mechanism. In a Monte Carlo simulation,
we study the performance of parametric and nonparametric identification strategies
for the HLATE and show that both approaches yield consistent estimates.

In our empirical illustration, we show that the heterogeneity of recipient regions
with respect to their absorptive capacity matters considerably. Both measures of
a region’s absorptive capacity, the human capital endowment of the workforce and
quality of government, show similar patterns. While the treatment effect is insignif-
icant for regions with a very low level of absorptive capacity it exceeds the average
treatment effect for regions with above-average absorptive capacity. We find that
only about 30% of the recipient regions display sufficient levels of absorptive ca-
pacity to turn the transfers into economic growth. The quality of government and
human capital endowments are even more decisive for the investment effects from
transfers. Only 20 percentage points of the 30% of regions with significant growth
effects realize significant effects on investment. The growth effects of the remain-
ing 10 percentage points are likely consumption effects only which should not be
expected to last in the medium to the long run.

Our findings are complementary to recent work on the heterogeneous responses
to fiscal stimuli in macroeconomics in the sense that fiscal multipliers may differ
dramatically across recipients. We estimate positive responses to stimuli (transfers)
to be higher for recipients with higher levels of absorptive capacity measured as an
above-average endowment of human capital and an above-average level of quality of
government.
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Appendix A. Deriving the HLATE

We aim at proving

HLATE(x0, zi) = lim
∆→0

E[yi|0 < x̃i < ∆, zi]− E[yi| −∆ < x̃i < 0, zi]

E[Ti = 1|0 < x̃i < ∆, zi]− E[Ti = 1| −∆ < x̃i < 0, zi]
.

The outcome difference of observations at the threshold is

E[yi|x̃i = ∆, zi]− E[yi|x̃i = −∆, zi] =

E[Tiβ|x̃i = ∆, zi]− E[Tiβ|x̃i = −∆, zi]

+E[ziβ|x̃i = ∆, zi]− E[ziβ|x̃i = −∆, zi]

+E[αi|x̃i = ∆, zi]− E[αi|x̃i = −∆, zi].

We assume that E[αi|xi = x] is continuous at x0 such that the last two pairs of
terms in the above equation cancel each other as ∆ moves towards zero. Assuming
conditional independence between Ti and β as well as between zi and β yields

E[yi|x̃i = ∆, zi]− E[yi|x̃i = −∆, zi] =

E[β|x̃i = ∆, zi]E[Ti|x̃i = ∆, zi] + E[β|x̃i = ∆, zi]E[zi|x̃i = ∆, zi]

−E[β|x̃i = −∆, zi]E[Ti|x̃i = −∆, zi]− E[β|x̃i = −∆, zi]E[zi|x̃i = −∆, zi].
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Note that conditional independence requires that no selection into treatment on the
basis of the expected effect occurs. Assuming that E[β|x̃i = 0] is continuous at
x̃i = 0 then delivers

lim
∆→0

E[yi|x̃i = ∆, zi]− lim
∆→0

E[yi|x̃i = −∆, zi] =

E[β|x̃i = 0, zi]
(

lim
∆→0

E[Ti|x̃i = ∆, zi]− lim
∆→0

E[Ti|x̃i = −∆, zi]
)

which can easily be reformulated to obtain HLATE(zi) from above.

Appendix B. Standard errors of the HLATE

Under the maintained assumptions in this paper and Assumptions (i)-(vii) in Hahn,

Todd, and van der Klaauw (2001), the estimate ̂HLATE(x0, zi) is distributed as

n2/5[ ̂HLATE(x0, zi)−HLATE(x0, zi)]→ N [µHLATE(x0, zi),ΩHLATE(x0, zi)]
(11)

where µHLATE(x0, zi) approaches zero as ∆ in (9) approaches zero. ΩHLATE(x0, zi)
in (11) is then defined as in Hahn, Todd, and van der Klaauw (2001) conditional on
zi.

Appendix C. Monte Carlo study

Appendix C.1. Simulation design

In the following we examine the performance of parametric and nonparametric es-
timators in identifying the HLATE. We consider sharp and fuzzy designs for the
HLATE and scenarios where the treatment depends on one (1-way threshold) ver-
sus two forcing variables (2-way threshold). In the application in Section 4 only one
forcing variable matters for treatment assignment, yet it is useful to consider a more
general case other applications rely upon (see Egger and Wamser, 2011). For each
case (1-way versus 2-way design), let us consider 3 experiments: a Sharp RDD, a
Fuzzy 1 RDD with a low degree of fuzziness, and a Fuzzy 2 RDD with a high degree
of fuzziness about treatment assignment (see below). We set the standard deviation
of the disturbances εi to σε = 0.3 and σε = 0.6. In any case, εi is distributed as
εi i.i.d.N(0, σε).

We generate the data about xi and zi for observation i = 1, . . . , N based on a
grid of 60 · 60 bins in x-z space. In each dimension, bins take addresses (i.e., values
of xi and zi) between −2.95 and 2.95 and have a size of 0.1. We, assume that each
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of the 602 = 3, 600 bins hosts 6 observations with identical values of xi and zi but
an independent draw of εi. Hence, there is a total number of 21, 600 observations
available to the largest data-set possible. This aims at mimicking the empirical
situation with RDDs where one allots data points into bins to generate averages of
xi (zi) and yi (see Angrist and Pischke, 2009; Lee and Lemieux, 2010). To illustrate
the small-sample performance of the nonparametric estimator of the HLATE and
compare it with its parametric counterpart, we alternatively consider subsets of that
data-set where we consider sub-grids of 40 · 40 in the support region of [−1.95, 1.95]
in x-z space with 402 · 6 = 9, 600 observations and 20 · 20 in the support region of
[−0.95, 0.95] in x-z space with 202 · 6 = 2, 400 observations.

In each of the experiments, LATE corresponds to the average level of HLATE
and is measured by the coefficient on the treatment dummy Ti, i.e., β = 1.

1-way threshold

With a 1-way threshold rule, the data generating processes can be described as
follows.

Sharp RDD:

yi =1 + Ti + .5Tizi + .5xi + .5zi + .1x2
i + .1z2

i + .3xizi + εi

where Ti = 1(xi ≥ 0).

Fuzzy 1 RDD:

yi =1 + Ti + .5Tizi + .5xi + .5zi + .1x2
i + .1z2

i + .3xizi + εi

where P (Ti = 1) =


1 if xi > b
11/12 if 0 ≤ xi ≤ b
1/12 if −b ≤ xi < 0
0 if xi < −b

For the simulations, we chose b = 0.45 so that the probability of treatment mis-
assignment is 1/12 in the support region of [−0.45, 0.45] in x-space (i.e., in 5 bins
to the left and in 5 bins to the right of the 1-way threshold). The maximum of
observations in the mis-classification region are 10 ·60 ·6 = 3, 600, 10 ·40 ·6 = 2, 400,
and 10 · 20 · 6 = 1, 200, depending on the chosen grid and sample size. Hence, 300,
200, and 100 observations, respectively, are expected to be misclassified. Note that
the random process underlying the fuzzyness are drawn for each replication of the
Monte Carlo study separately.
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Fuzzy 2 RDD:

yi =1 + Ti + .5Tizi + .5xi + .5zi + .1x2
i + .1z2

i + .3xizi + εi

where P (Ti = 1) =


1 if xi > b
5/6 if 0 ≤ xi ≤ b
1/6 if −b ≤ xi < 0
0 if xi < −b

As in the Fuzzy 1 design, we chose b = 0.45 but we assumed the probability of
treatment mis-assignment amounting to 1/6 in the support region of [−0.45, 0.45]
in x-space. Hence, depending on the chosen grid and sample size, 600, 400, and 200
observations, respectively, are expected to be misclassified in the Fuzzy 2 design.

The results for the Sharp RDD are illustrated in Figure 10 and the ones for the
Fuzzy 1 and Fuzzy 2 RDDs are illustrated in Figure 11. In the 1-way experiments,
the treatment is only determined by forcing the variable xi whereas the outcome is
affected by xi and zi. The heterogeneous treatment effect appears in the outcome
graphs as a wedge between the red (treated) and the blue (untreated) observations.
The extent of heterogeneity of LATE is noticeable as the outcome shift between
treated and non-treated observations disappears for low values of zi. In the fuzzy
experiments illustrated in Figure 11, the treatment probability (approximated by the
fraction of treated observations) jumps at the threshold x0 by about 0.85 and 0.65
in the Fuzzy 1 and Fuzzy 2 designs, respectively, which reflects the corresponding
mis-classification probabilities of 1/12 and 1/6. With a fuzzy design, some of the
red observations characterized by xi > x0 do not receive treatment while some of
of the blue observations with xi < x0 do receive treatment. This fuzziness blurs
the discontinuity in the outcome function and results in a smaller treatment wedge
compared to the sharp design. According to equation (9), the treatment effect
is measured by the ratio of the outcome wedge and the jump in the treatment
probability.

– Figures 10 and 11 –

2-way threshold

With a 2-way threshold, both xi and zi serve as forcing variables and LATE also
varies with zi. With respect to xi, we maintain the threshold value x0 = 0 while
now also zi has to exceed a level of z0 = −0.6 in order to qualify for treatment.
For (sharp) treatment assignment we require both rules to be fulfilled at the same
time.28 Distinguishing again between sharp and fuzzy scenarios we consider the

28Recent work by Wong, Steiner and Cook (2010) considers multiple threshold rules but requires
only one rule to be satisfied for treatment.
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following experiments in the 2-way threshold design:

Sharp RDD:

yi =1 + Ti + .5Tizi + .5xi + .5zi + .1x2
i + .1z2

i + .3xizi + εi

where Ti = 1(xi ≥ 0 ∧ zi ≥ −0.6).

Fuzzy 1 RDD:
yi =1 + Ti + .5Tizi + .5xi + .5zi + .1x2

i + .1z2
i + .3xizi + εi

where P (Ti = 1) =


1 if xi > b ∧ zi > −.6 + b
11/12 if 0 ≤ xi ≤ b ∧ −0.6− b ≤ zi ≤ −.6
1/12 if b ≤ xi < 0 ∧ −.6 ≤ zi ≤ −.6 + b
0 if xi < b ∧ zi < −.6 + b

As with a 1-way treatment threshold, we chose b = 0.45 and the probability
of treatment mis-assignment is 1/12 in the chosen support region. However, now
treatment mis-classification may vary with both xi and zi. Therefore, we chose the
support region to be bounded by [−0.45, 0.45] in x-space and by [−1.05,−0.15] in z-
space. The maximum of observations in the mis-classification region are 10 · 10 · 6 =
600, independent of the chosen grid and sample size. Hence, 50 observations are
expected to be misclassified in any one of the fuzzy design experiments.

Fuzzy 2 RDD:
yi =1 + Ti + .5Tizi + .5xi + .5zi + .1x2

i + .1z2
i + .3xizi + εi

where P (Ti = 1) =


1 if xi > b ∧ zi > −.6 + b
7/8 if 0 ≤ xi ≤ b ∧ −0.6− b ≤ zi ≤ −.6
1/8 if b ≤ xi < 0 ∧ −.6 ≤ zi ≤ −.6 + b
0 if xi < b ∧ zi < −.6 + b

As in the 2-way threshold Fuzzy 1 design, we chose b = 0.45 but we assumed
the probability of treatment mis-assignment amounting to 1/6 in the support region
of [−0.45, 0.45] in x-space and [−1.05,−0.15] in z-space. Hence, 100 observations
are generally expected to be misclassified in the 2-way Fuzzy 2 design. The 2-way
Sharp RDD is illustrated in Figure 12 and the corresponding Fuzzy 1 and Fuzzy 2
RDDs are illustrates in Figure 13.

– Figures 12 and 13 –

Notice that, apart from the different design in general, the 2-way (H)LATE esti-
mates are based on a smaller number of cells and observations at the the treatment
thresholds. The latter should not have any bearing for the bias but it comes at a
loss of precision of the estimates in comparison to the 1-way threshold results.
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Appendix C.2. Results

The simulation results for the local average treatment effect (LATE; at x, z = 0)
are presented in Table 6 for a 1-way threshold design (and in Table 7 for a 2-
way threshold design). Those for the heterogeneous local average treatment effect
(HLATE; at x = 0 across all z) are presented graphically in Figure A.5. Remember
that LATE in the sense of the average HLATE corresponds to the coefficient on
the treatment dummy Ti, i.e., β = 1. The bias is measured as a deviation of the
estimate β̂ from the true parameter β = 1 in percent.

Note that, for the parametric estimates, we use the true functional form, i.e.,
that of the data-generating process. (Our interest is not in simulating the effect
of mis-specification of the control function, but in illustrating the small sample
performance of nonparametric relative to parametric estimates of the HLATE.)

The findings can be summarized as follows. First, the estimates of both the
nonparametric and the parametric estimates of LATE (β) appear to have a small
bias across all experiments considered in the Monte Carlo analysis. In every one
of the experiments is the bias of LATE smaller than one percent in absolute value
independent of sample size of whether we consider a sharp or a fuzzy RDD (see
the panels at the top of Tables 6 and 7). All else equal, the mean squared error
tends to be smallest with a sharp design, a smaller value of σε, a larger bandwidth
considered, parametric rather than nonparametric estimates, and a 1-way instead of
a 2-way threshold design. None of that is surprising, since fuzzy designs add noise to
the estimation problem by involving a projection of the endogenous treatment status
in a first stage; a larger value of σε involves more noise at the level of the outcome
equation; a smaller bandwidth considered is associated with a smaller number of
observations we estimate the HLATE from, thus reducing precision; more flexible
nonparametric estimates involve a loss of precision, if the true functional form of the
relationship between the forcing variable (x) and also of the variable which interacts
with treatment status (z) is a parametric polynomial; and the 2-way threshold design
requires more parameters to be estimates – in our case, from a smaller number of
observations at which the threshold is observed – which leads to efficiency losses.

– Tables 6 and 7

These insights about LATE also carry over to the estimation of HLATE in Figure
6. Quite obviously, the point estimates are virtually indistinguishable from the
true values, but the estimated confidence intervals are smaller for the parametric
estimates (which assumes the true functional form) than for the more flexible, local-
linear-regression-based nonparametric estimates. Finally, the estimates for the 2-
way threshold regressions in Figure 7 have somewhat larger confidence intervals
than their counterparts for the 1-way thresholds.
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Hence, we may conclude that both the nonparametric and the parametric esti-
mates work well in small to moderately large samples. In empirical circumstances
where parametric approximations of unknown functional forms will not work as well
as in the Monte Carlo study, where the parametric estimates assumed the correct
form of the control function, we expect nonparametric estimates to work quite well.
In any case, HLATE can be inferred with very small bias from both nonparametric
and parametric control function, irrespective of whether a sharp or a fuzzy design
is being considered.

– Figures 14 and 15 –

Appendix D. Frequency of Observations

Figure 16 summarizes the frequency of observations in HC-forcing-variable-space
and QoG-forcing-variable-space.

– Figure 16 –

Appendix E. Construction of Time-variant Mea-

sures of Absorptive Capacity

While the time-invariant measures of HC and QoG can directly be based on informa-
tion about the NUTS2 level from a single source, namely European Union Labour
Force Survey and Charron, Lapuente, and Dykstra (2011), respectively, time-variant
measures thereof have to rely on imputation from several levels of aggregation and
even several sources. We constructed time-variant measures on HC and QoG by as
follows.

Towards a time-variant measure of HC at the NUTS2 level: Most of
the required annual data points on time-variant HC for all NUTS2 regions and the
same years in which the forcing variable is measured (i.e., prior to the respective
programming periods) are available from the European Values Study (EVS) which
is conducted by the European Values Systems Study Group, EVSSG. The EVS
classifies the surveyed population into three education categories: low, medium, and
high. We define s2ht ∈ [0, 1] as the share of medium plus high skilled in all surveyed
individuals at the NUTS2 level and transform it logistically as σ2ht = ln s2ht

1−s2ht
∈

(−∞,∞). We interpolate σ2ht linearly, but are still left with missing data. In a
next step, we use the same measure at the next higher level, namely NUTS1, σ1ht

34



and use it to impute missing cross-sectional data of σ2ht by σ1ht. Finally, for the few
remaining missing observations, we impute σ2ht by σ0ht, where the latter is measured
at the country level. Then, we use the imputed counterpart to σ2ht, referred to as
σ̂2ht, and retransform it so as to obtain an imputed measure of HC as ŝ2ht = σ̂2ht

1+σ̂2ht
.

The latter is used for some of the results in the main text.

Towards a time-variant measure of QoG at the NUTS2 level: The
imputation of the QoG index involves two types of data and two steps. First of all,
we utilize Eurobarometer Survey data on two variables, namely citizen’s satisfaction
with the state of democracy in their region, and their satisfaction with the rule of
law in their region. Both variables take on scores between 0 and 100 and they are
mapped into the unit space before being transformed akin to the HC share as above.
Then, those two measures are interpolated each and retransformed. Let us call those
imputed measures at the NUTS2 level that are now bounded between 0 and 1 r̂2ht

for satisfaction with rule of law and d̂2ht for satisfaction with the state of democracy.
In a second step, we regress the cross-sectional QoG index on these two measures

in linear models in order to impute the missing data on QoG prior to the first
programming period so as to obtain (average) values for the same years where the
forcing variable is measured. This results in the time-variant, imputed measure of
QoG as used for some of the results in the main text.
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Tables and Figures

Table 1: Descriptive Statistics

Mean Std. Dev. Min Max Obs.
(1) (2) (3) (4) (5)

GDP per capita growth rate 0.043 0.017 -0.008 0.131 646
ln(Investments/Capita) 8.222 0.430 6.483 9.406 646
Objective 1 0.317 0.466 0 1 646
Avg. GDP per capita in threshold years 12,792.870 4,714.408 4,448.148 37,835.190 646
Avg. GDP per capita in threshold years/EU avg. 0.913 0.297 0.300 2.328 646
Human capital (HC) - time-invariant 0 0.144 -0.376 0.318 646
Human capital (HC) - time-variant 0 0.184 -0.367 0.412 646
Quality of government (QoG) - time-invariant 0 0.815 -2.756 1.187 640
Quality of government (QoG) - time-variant 0 3.185 -11.387 5.109 640

Notes: Units of observation are EU NUTS2 regions. GDP, investment, and population data are from Cambridge
Econometrics; information about Objective 1 treatment is available directly from the European Commission, from
various Council Regulations, in particular the Regulations numbered 2052/88, 2082/93, and 502/1999, and in
editions of the Official Journal (see also Becker, Egger, and von Ehrlich, 2010); the human capital (HC) variable
measures the share of the workforce with at least upper-secondary education (ISCED categories 3 to 6); the quality
of government (QoG) index comes from Charron and Lapuente (2011). HC and QoG variables are normalized
to zero, by detracting the EU average; see the main text for more detail. For HC and QoG we construct the
corresponding time-variant variables using information from the European Value Survey, Eurobarometer, and the
Barro-Lee dataset on educational attainments.
We miss information on the four French overseas-départements and the two autonomous Portuguese regions Madeira
and Azores for all three periods. For the Dutch region Flevoland we miss information for the first period only.
Regarding the East-German NUTS2 regions we calculated GDP per capita growth for the years 1989 and 1990 using
information from the GDR’s statistic yearbook; the East-German investment per capita in the first programming
period is measured as the average over the years 1991,1992, and 1993. The EU QoG index is not available for the
Spanish region Ceuta and Melilla.
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Table 2: GDP/Capita Growth Rate, Objective 1 Treatment and Ab-
sorptive Capacity

3rd-order polynomial 4th-order polynomial 5th-order polynomial
Pooled OLS FE Pooled OLS FE Pooled OLS FE

Human Capital
Time-invariant

Object1 .007 .007 .004 .004 .010 .012
(.004)∗ (.004)∗ (.004) (.004) (.004)∗∗∗ (.004)∗∗∗

Object1×HC .044 .046 .046 .044 .048 .045
(.010)∗∗∗ (.009)∗∗∗ (.010)∗∗∗ (.009)∗∗∗ (.010)∗∗∗ (.009)∗∗∗

HC .008 - .006 - .007 -
(.008) (.008) (.008)

Const. .041 .011 .041 .041 .038 .037
(.002)∗∗∗ (.011) (.002)∗∗∗ (.002)∗∗∗ (.003)∗∗∗ (.003)∗∗∗

Obs. 646 646 646 646 646 646
R2 .293 .319 .295 .302 .291 .311

Time-variant
Object1 .009 .009 .005 .006 .010 .011

(.004)∗∗ (.004)∗∗ (.004) (.004)] (.004)∗∗∗ (.004)∗∗∗

Object1×HC .042 .038 .041 .041 .042 .041
(.008)∗∗∗ (.008)∗∗∗ (.008)∗∗∗ (.008)∗∗∗ (.008)∗∗∗ (.007)∗∗∗

HC .003 .003 .003 .004 .004 .005
(.004) (.004) (.004) (.004) (.004) (.004)

Const. .040 .015 .040 .040 .037 .037
(.002)∗∗∗ (.013) (.002)∗∗∗ (.002)∗∗∗ (.003)∗∗∗ (.003)∗∗∗

Obs. 646 646 646 646 646 646
R2 .259 .291 .266 .274 .261 .278

Quality of Government
Time-invariant

Object1 .011 .013 .008 .007 .010 .010
(.004)∗∗∗ (.004)∗∗∗ (.003)∗∗ (.003)∗∗ (.003)∗∗∗ (.003)∗∗∗

Object1×QoG .005 .005 .006 .006 .006 .006
(.002)∗∗ (.002)∗∗∗ (.002)∗∗∗ (.002)∗∗∗ (.002)∗∗∗ (.002)∗∗∗

QoG .002 - .001 - .001 -
(.002) (.002) (.002)

Const. .039 .001 .039 .040 .037 .037
(.002)∗∗∗ (.012) (.002)∗∗∗ (.002)∗∗∗ (.003)∗∗∗ (.003)∗∗∗

Obs. 640 640 640 640 640 640
R2 .238 .286 .247 .255 .244 .257

Time-variant
Object1 .010 .012 .006 .006 .009 .009

(.004)∗∗ (.004)∗∗∗ (.003)∗ (.004)∗ (.003)∗∗∗ (.003)∗∗∗

Object1×QoG .001 .001 .001 .001 .001 .001
(.0005)∗∗ (.0005)∗∗∗ (.0005)∗∗∗ (.0005)∗∗ (.0005)∗∗∗ (.0005)∗∗∗

QoG .0005 .0005 .0004 .0004 .0004 .0004
(.0004) (.0003) (.0004) (.0004) (.0004) (.0004)

Const. .039 .001 .039 .039 .037 .037
(.002)∗∗∗ (.012) (.002)∗∗∗ (.002)∗∗∗ (.003)∗∗∗ (.003)∗∗∗

Obs. 640 640 640 640 640 640
R2 .233 .28 .241 .243 .238 .25

Notes: ∗∗∗, ∗∗, ∗, ] denote significance at the 1, 5, 10, and 15% level, respectively. Standard errors are clustered at
the NUTS2 level. First-stage regressions are probit models. The polynomial functions are allowed to have different
parameters to the left and the right of the threshold. The quality of government variable (QoG) refers to the EU
QoG index by Charron and Lapuente (2011); for the construction of the time-variant version see Appendix XX.
The sample consists of the EU12 NUTS2 regions for the first period, the EU15 NUTS2 regions for the second
period, and the EU25 NUTS2 regions for the third programming period. We miss information on the four French
overseas-départements and the two autonomous Portuguese regions Madeira and Azores for all three periods. For
the Dutch region Flevoland we miss information for the first period only.



Table 3: LN(Investments/Capita), Objective 1 Treatment and Absorp-
tive Capacity

3rd-order polynomial 4th-order polynomial 5th-order polynomial
Pooled OLS FE Pooled OLS FE Pooled OLS FE

Human Capital
Time-invariant

Object1 -.075 -.044 .072 .076 .111 .150
(.076) (.077) (.072) (.070) (.061)∗ (.060)∗∗

Object1×HC .793 .728 .792 .748 .870 .806
(.229)∗∗∗ (.222)∗∗∗ (.229)∗∗∗ (.218)∗∗∗ (.236)∗∗∗ (.221)∗∗∗

HC .315 - .346 - .342 -
(.132)∗∗ (.138)∗∗ (.140)∗∗

Const. 8.135 8.324 8.120 8.109 8.134 8.106
(.043)∗∗∗ (.230)∗∗∗ (.055)∗∗∗ (.056)∗∗∗ (.061)∗∗∗ (.062)∗∗∗

Obs. 646 646 646 646 646 646
R2 .563 .575 .576 .582 .578 .589

Time-variant
Object1 -.075 -.050 .072 .082 .107 .141

(.082) (.083) (.074) (.074) (.062)∗ (.061)∗∗

Object1×HC .638 .694 .624 .624 .677 .662
(.230)∗∗∗ (.217)∗∗∗ (.228)∗∗∗ (.230)∗∗∗ (.231)∗∗∗ (.230)∗∗∗

HC .274 .309 .292 .312 .291 .318
(.081)∗∗∗ (.081)∗∗∗ (.081)∗∗∗ (.075)∗∗∗ (.081)∗∗∗ (.074)∗∗∗

Const. 8.134 8.419 8.111 8.093 8.112 8.080
(.042)∗∗∗ (.234)∗∗∗ (.052)∗∗∗ (.054)∗∗∗ (.057)∗∗∗ (.059)∗∗∗

Obs. 646 646 646 646 646 646
R2 .546 .559 .557 .563 .557 .567

Quality of Government
Time-invariant

Object1 .166 .215 .260 .264 .226 .244
(.086)∗ (.091)∗∗ (.087)∗∗∗ (.083)∗∗∗ (.072)∗∗∗ (.072)∗∗∗

Object1×QoG .153 .137 .131 .122 .127 .118
(.051)∗∗∗ (.048)∗∗∗ (.051)∗∗ (.048)∗∗ (.051)∗∗ (.048)∗∗

QoG .097 - .111 - .110 -
(.024)∗∗∗ (.024)∗∗∗ (.024)∗∗∗

Const. 8.050 7.966 8.033 8.031 8.051 8.040
(.040)∗∗∗ (.187)∗∗∗ (.048)∗∗∗ (.047)∗∗∗ (.051)∗∗∗ (.054)∗∗∗

Obs. 640 640 640 640 640 640
R2 .581 .592 .58 .595 .584 .595

Time-variant
Object1 .141 .190 .234 .234 .207 .225

(.085)∗ (.089)∗∗ (.086)∗∗∗ (.084)∗∗∗ (.071)∗∗∗ (.070)∗∗∗

Object1×QoG .037 .034 .031 .029 .030 .028
(.013)∗∗∗ (.012)∗∗∗ (.013)∗∗ (.012)∗∗ (.013)∗∗ (.012)∗∗

QoG .026 .030 .029 .031 .029 .031
(.006)∗∗∗ (.005)∗∗∗ (.006)∗∗∗ (.005)∗∗∗ (.006)∗∗∗ (.005)∗∗∗

Const. 8.056 7.954 8.041 8.039 8.058 8.047
(.040)∗∗∗ (.188)∗∗∗ (.047)∗∗∗ (.047)∗∗∗ (.051)∗∗∗ (.053)∗∗∗

Obs. 640 640 640 640 640 640
R2 .58 .591 .581 .593 .584 .594

Notes: ∗∗∗, ∗∗, ∗, ] denote significance at the 1, 5, 10, and 15% level, respectively. Standard errors are clustered at
the NUTS2 level. First-stage regressions are probit models. The polynomial functions are allowed to have different
parameters to the left and the right of the threshold. For the construction of the time-variant version of the human
capital variable (HC) see Appendix XX. The sample consists of the EU12 NUTS2 regions for the first period, the
EU15 NUTS2 regions for the second period, and the EU25 NUTS2 regions for the third programming period. We
miss information on the four French overseas-départements and the two autonomous Portuguese regions Madeira
and Azores for all three periods. For the Dutch region Flevoland we miss information for the first period only.



Table 4: Objective 1 Treatment, Human Capital, and Quality of Gov-
ernment

3rd-order polynomial 4th-order polynomial
Pooled OLS FE Pooled OLS FE

Dependent Var.: GDP/Capita Growth Rate
Object1 .009 .009 .010 .012

(.003)∗∗∗ (.003)∗∗∗ (.003)∗∗∗ (.003)∗∗∗

Object1×QoG -.003 -.002 -.001 -.001
(.004) (.003) (.003) (.003)

Object1×HC .026 .029 .027 .028
(.016)] (.014)∗∗ (.016)∗ (.014)∗∗

Object1×QoG×HC .055 .067 .050 .066
(.038)] (.035)∗ (.037) (.035)∗

Object1×QoG×HC×I -.116 -.098 -.099 -.094
(.062)∗ (.053)∗ (.060)∗ (.052)∗

QoG .005 .005 .005 .004
(.002)∗∗∗ (.002)∗∗∗ (.002)∗∗∗ (.002)∗∗∗

HC .024 .015 .023 .014
(.015)] (.012) (.015)] (.012)

QoG×HC -.084 -.077 -.084 -.076
(.034)∗∗ (.026)∗∗∗ (.033)∗∗ (.025)∗∗∗

QoG×HC×I .136 .106 .129 .103
(.055)∗∗ (.043)∗∗ (.054)∗∗ (.042)∗∗

Const. .040 .017 .039 .012
(.002)∗∗∗ (.011) (.002)∗∗∗ (.013)

Obs. 640 640 640 640
R2 .322 .378 .321 .386
F-Stat.: joint significance HC terms 10.43 9.33 10.64 9.12
F-Stat.: joint significance QoG terms 5.13 4.01 5.61 4.79

Dependent Var.: Ln(Investments/Capita)
Object1 .006 .126 .046 .127

(.073) (.056)∗∗ (.077) (.057)∗∗

Object1×QoG .279 .218 .277 .222
(.088)∗∗∗ (.072)∗∗∗ (.090)∗∗∗ (.071)∗∗∗

Object1×HC .660 .755 .725 .760
(.232)∗∗∗ (.231)∗∗∗ (.246)∗∗∗ (.236)∗∗∗

Object1×QoG×HC 1.086 .565 .934 .579
(.536)∗∗ (.517) (.579)] (.540)

Object1×QoG×HC×I .736 .560 1.024 .646
(1.001) (.912) (1.041) (.918)

QoG .074 .094 .072 .092
(.039)∗ (.038)∗∗ (.039)∗ (.037)∗∗

HC -.015 .257 -.037 .233
(.160) (.167)] (.153) (.164)

QoG×HC .213 -.035 .232 -.022
(.290) (.252) (.288) (.257)

QoG×HC×I -.445 .261 -.604 .146
(.630) (.674) (.622) (.658)

Const. 14.997 15.418 15.009 15.389
(.041)∗∗∗ (.212)∗∗∗ (.051)∗∗∗ (.237)∗∗∗

Obs. 640 640 640 640
R2 .646 .699 .647 .7
F-Stat.: joint significance HC terms 24.86 23.21 23.28 22.44
F-Stat.: joint significance QoG terms 16.74 7.74 13.20 7.22

Notes: ∗∗∗, ∗∗, ∗, ] denote significance at the 1, 5, 10, and 15% level, respectively. Indicator I is unity for observations
where QoG as well as HC are negative and zero otherwise. Standard errors are clustered at the NUTS2 level. First-
stage regressions are probit models. The polynomial functions are allowed to have different parameters to the left
and the right of the threshold. The human capital variable (HC) as well as the quality of government variable (QoG)
are time-invariant. The sample consists of the EU12 NUTS2 regions for the first period, the EU15 NUTS2 regions
for the second period, and the EU25 NUTS2 regions for the third programming period. We miss information on the
four French overseas-départements and the two autonomous Portuguese regions Madeira and Azores for all three
periods. For the Dutch region Flevoland we miss information for the first period only. Regarding the East-German
NUTS2 regions, we calculated GDP per capita growth for the years 1989 and 1990 using information from the
GDR’s statistic yearbook.



Table 5: Percentage of Objective 1 regions with significant positive
HLATE per country

Confidence Interval

Country 90% 80% 70% Point Estimate
GDP/Capita Growth

Austria 100 100 100 100
Belgium 100 100 100 100
Czech Republic 0 43 57 100
Estonia 100 100 100 100
Finland 100 100 100 100
France 0 0 0 0
Germany 100 100 100 100
Greece 8 8 8 23
Hungary 86 86 100 100
Ireland 40 100 100 100
Italy 0 0 0 0
Latvia 0 0 100 100
Lithuania 0 0 0 100
Malta 0 0 0 0
Netherlands 100 100 100 100
Poland 6 25 44 100
Portugal 0 0 0 0
Slovak Republic 0 0 0 100
Slovenia 0 50 100 100
Spain 0 0 0 68
Sweden 100 100 100 100
United Kingdom 50 75 100 100
Average 30 36 40 61

Ln(Investments/Capita)
Austria 100 100 100 100
Belgium 0 0 0 0
Czech Republic 0 0 0 0
Estonia 0 0 0 0
Finland 100 100 100 100
France 0 0 0 0
Germany 100 100 100 100
Greece 0 0 0 0
Hungary 0 0 0 0
Ireland 0 0 40 100
Italy 0 0 0 55
Latvia 0 0 0 0
Lithuania 0 0 0 0
Malta 0 0 0 0
Netherlands 100 100 100 100
Poland 0 0 0 0
Portugal 0 0 0 21
Slovak Republic 0 0 0 0
Slovenia 0 0 0 0
Spain 0 0 0 0
Sweden 100 100 100 100
United Kingdom 13 13 25 88
Average 21 21 23 34

Notes: The percentages in the table are based on the same estimates as Figure 6. Note that Cyprus, Denmark, and
Luxembourg did not receive Objective 1 funds during the period under consideration.

40



Table 6: Local Average Treatment Effect (1-Way Threshold)

Panel A: Bias of Average Treatment Effect

Sharp RDD Fuzzy 1 RDD Fuzzy 2 RDD
σε = 0.3 σε = 0.6 σε = 0.3 σε = 0.6 σε = 0.3 σε = 0.6

Parametric

N = 602 · 6 0.012 -0.061 0.013 0.015 -0.068 -0.076
N = 402 · 6 0.004 -0.039 0.005 0.006 -0.046 -0.056
N = 202 · 6 0.017 0.116 0.022 0.031 0.147 0.203

Nonparametric

Bandwidth 2/3 -0.017 -0.044 -0.020 -0.026 -0.046 -0.047
Bandwidth 1/3 -0.007 -0.124 -0.015 -0.037 -0.158 -0.244
Bandwidth 1/6 0.079 -0.050 0.101 0.101 -0.047 -0.039

Panel B: RMSE of Average Treatment Effect

Sharp RDD Fuzzy 1 RDD Fuzzy 2 RDD
σε = 0.3 σε = 0.6 σε = 0.3 σε = 0.6 σε = 0.3 σε = 0.6

Parametric

N = 602 · 6 0.006 0.027 0.008 0.010 0.033 0.042
N = 402 · 6 0.014 0.062 0.019 0.027 0.082 0.116
N = 202 · 6 0.061 0.237 0.098 0.183 0.379 0.712

Nonparametric

Bandwidth 2/3 0.010 0.040 0.013 0.019 0.054 0.079
Bandwidth 1/3 0.027 0.109 0.043 0.089 0.176 0.368
Bandwidth 1/6 0.126 0.488 0.193 0.472 0.741 1.788

Notes: All estimates result from Monte Carlo simulations with 2000 replications. The random error terms in the
outcome equation as well as the random process underlying the fuzziness are drawn for each replication separately.
The nonparametric estimates result from local linear regressions with uniform kernel. The variance of the error term
in the outcome equation is denoted by σε. Fuzzy 1 (2) refers to a data generating process with a misassignment
probability of 1/12 (1/6) within 5 bins at both sides of the threshold. The largest sample refers to a grid range
[−2.95, 2.95] with 0.1 intervals. Accordingly, x and z feature 60 different values each. We observe each x − z
combination 6 times. The bias as well as the RMSE of the average treatment effect are measured in percent.
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Table 7: Local Average Treatment Effects (2-Way Threshold)

Panel A: Bias of Average Treatment Effect
Sharp RDD Fuzzy 1 RDD Fuzzy 2 RDD

σε = 0.3 σε = 0.6 σε = 0.3 σε = 0.6 σε = 0.3 σε = 0.6

Parametric

N = 602 · 6 0.012 -0.097 0.012 0.013 -0.098 -0.101
N = 402 · 6 0.047 0.051 0.049 0.051 0.053 0.056
N = 202 · 6 -0.001 0.175 -0.003 -0.005 0.181 0.188

Nonparametric

Bandwidth 2/3 -0.004 -0.079 -0.002 0.005 -0.088 -0.099
Bandwidth 1/3 0.026 -0.088 0.032 0.041 -0.087 -0.091
Bandwidth 1/6 0.077 -0.035 0.072 0.053 -0.019 0.049

Panel B: RMSE of Average Treatment Effect
Sharp RDD Fuzzy 1 RDD Fuzzy 2 RDD

σε = 0.3 σε = 0.6 σε = 0.3 σε = 0.6 σε = 0.3 σε = 0.6

Parametric

N = 602 · 6 0.007 0.027 0.007 0.008 0.028 0.029
N = 402 · 6 0.014 0.058 0.015 0.016 0.062 0.066
N = 202 · 6 0.054 0.197 0.059 0.067 0.218 0.247

Nonparametric

Bandwidth 2/3 0.016 0.066 0.017 0.018 0.069 0.075
Bandwidth 1/3 0.042 0.165 0.047 0.061 0.185 0.243
Bandwidth 1/6 0.159 0.599 0.185 0.290 0.691 1.081

Notes: All estimates result from Monte Carlo simulations with 2000 replications. The random error terms in the
outcome equation as well as the random process underlying the fuzziness are drawn for each replication separately.
The nonparametric estimates result from local linear regressions with uniform kernel. The variance of the error term
in the outcome equation is denoted by σε. Fuzzy 1 (2) refers to a data generating process with a misassignment
probability of 1/12 (1/6) within 5 bins at both sides of the two dimensional threshold. The largest sample refers to
a grid range [−2.95, 2.95] with 0.1 intervals. Accordingly, x and z feature 60 different values each. We observe each
x− z combination 6 times. The bias as well as the RMSE of the average treatment effect are measured in percent.
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Figure 1: Objective 1 status and the 75% GDP threshold

Note: The figure shows average treatment rates in equally-sized bins of 1.5 percentage points
which are plotted against the per-capita GDP level that applied in the years relevant for the
decision about Objective 1 status. The graph represents a local polynomial smooth based on
an Epanechnikov kernel with a rule-of-thumb bandwidth. Note that the outlier at about 1.3
times the EU average which received treatment represents only one observation, namely Berlin
in the 1989-1993 programming period. All results are robust to the exclusion of Berlin.
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Figure 2: Human Capital, Quality of Government and the 75% GDP
threshold

Human Capital (HC) Quality of Government (QoG)

Note: The figures show averages of HC and QoG in equally-sized bins of 1.5 percentage points
which are plotted against the per-capita GDP level that applied in the years relevant for the
decision about Objective 1 status. The graphs represent a 2nd-order local polynomial function.

44



Figure 3: GDP per capita growth rate, Objective 1 Treatment, and
absorptive capacity

Note: The upper and lower figures illustrate the relationship between the outcome, forcing
variable, human capital, and quality of government, respectively. The red (blue) dots indicate
observations which received (did not receive) Objective 1 treatment. The surfaces represent
5th-order polynomial functions of per-capita GDP and linear functions of human capital and
quality of government, respectively. These functions are estimated on both sides of the 75%
threshold separately.



Figure 4: LN(Investments/Capita), Objective 1 Treatment, and absorp-
tive capacity

Note: The upper and lower figures illustrate the relationship between the outcome, forcing
variable, human capital, and quality of government, respectively. The red (blue) dots indicate
observations which received (did not receive) Objective 1 treatment. The surfaces represent
5th-order polynomial functions of per-capita GDP and linear functions of human capital and
quality of government, respectively. These functions are estimated on both sides of the 75%
threshold separately.



Figure 5: HLATE and GDP/Capita Growth rate for different levels
of Human Capital

Time-invariant HC
Parametric Nonparametric

Time-variant HC
Parametric Nonparametric

Note: The black line illustrates the point estimates, the red lines represent the 90% confidence
intervals. The parametric estimates are derived from a specification with 3rd-order polynomials
of initial GDP per-capita and linear human capital. The nonparametric estimates are based on
an optimal bandwidth selection procedure following Ludwig and Miller (2007). The confidence
intervals are derived from bootstrapped standard errors with 500 replications.



Figure 6: HLATE and GDP/Capita Growth rate for different levels
of Quality of Government

Time-invariant QoG
Parametric Nonparametric

Time-variant QoG
Parametric Nonparametric

Note: The black line illustrates the point estimates, the red lines represent the 90% confidence
intervals. The parametric estimates are derived from a specification with 3rd-order polynomials
of initial GDP per capita and linear quality of government. The nonparametric estimates are
based on an optimal bandwidth selection procedure following Ludwig and Miller (2007). The
confidence intervals are derived from bootstrapped standard errors with 500 replications.



Figure 7: HLATE and LN(Investments/Capita) for different levels of
Human Capital

Time-invariant HC
Parametric Nonparametric

Time-variant HC
Parametric Nonparametric

Note: The black line illustrates the point estimates, the red lines represent the 90% confidence
intervals. The parametric estimates are derived from a specification with 3rd-order polynomials
of initial GDP per-capita and linear human capital. The nonparametric estimates are based on
an optimal bandwidth selection procedure following Ludwig and Miller (2007). The confidence
intervals are derived from bootstrapped standard errors with 500 replications.



Figure 8: HLATE and LN(Investments/Capita) for different levels of
Quality of Government

Time-invariant QoG
Parametric Nonparametric

Time-variant QoG
Parametric Nonparametric

Note: The black line illustrates the point estimates, the red lines represent the 90% confidence
intervals. The parametric estimates are derived from a specification with 3rd-order polynomials
of initial GDP per capita and linear quality of government. The nonparametric estimates are
based on an optimal bandwidth selection procedure following Ludwig and Miller (2007). The
confidence intervals are derived from bootstrapped standard errors with 500 replications.



Figure 9: HLATE for different levels of Human Capital (HC) and
Quality of Government (QoG)

GDP/Capita Growth Rate
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Note: The light-red and light-blue areas refer to insignificant positive and insignificant negative
effects, respectively. The dark-red and dark-blue areas indicate significant positive and signif-
icant negative effects, respectively. We choose the 90% confidence interval – calculated on the
basis of bootstrapped standard errors with 500 replications – to determine significance of the
HLATE. The predictions stem from parametric OLS regressions with a 3rd-order polynomial
of per-capita GDP and linear HC and QoG.



Figure 10: Sharp RDD (1-Way Threshold)

Treatment Outcome (σε = 0.3)

Outcome (σε = 0.6)

Note: The upper left figure shows average treatment rates in equally-sized bins of 0.1 which
are plotted against the forcing variable x. The other two figures show average outcome rates
plotted against the forcing variable x and the interaction variable z. Blue (red) dots indicate
untreated (treated) observations. For illustration purpose, we focus on the range x = [−1, 1].
σε refers to the standard deviation of the error term in the outcome function. That is, the
greater is σε the less precise is the control function of x.
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Figure 11: Fuzzy RDD (1-Way Threshold)

Treatment (Fuzzy 1) Treatment (Fuzzy 2)

Outcome (Fuzzy 1, σε = 0.3 ) Outcome (Fuzzy 2, σε = 0.3)

Outcome (Fuzzy 1, σε = 0.6 ) Outcome (Fuzzy 2, σε = 0.6)

Note: The upper figures show average treatment rates in equally-sized bins of 0.1 which are
plotted against the forcing variable x. The figures in the two lower panels show average outcome
rates plotted against the forcing variable x and the interaction variable z. Blue (red) dots
indicate to untreated (treated) observations. For illustration purpose, we focus on the range
x = [−1, 1]. σε refers to the standard deviation of the error term in the outcome function while
Fuzzy 1 (2) indicates a misassignment probability of 1/12 (1/6). Accordingly, the greater is σε
the less precise is the control function of x, and Fuzzy 2 represents a less precise relationship
between the treatment the treatment rule than Fuzzy 1.



Figure 12: Sharp RDD (2-Way Threshold)

Treatment Outcome (σε = 0.3)

Outcome (σε = 0.6)

Note: The upper left figure shows average treatment rates in equally-sized bins of 0.1 which are
plotted against the two forcing variables x and z. The other two figures show average outcome
rates plotted against the forcing variables x and z. In addition to determining the treatment
probability, z affects the treatment effect via an interaction term in the outcome equation. σε
refers to the standard deviation of the error term in the outcome function. That is, the greater
is σε the less precise is the control function of x.
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Figure 13: Fuzzy RDD (2-Way Threshold)

Treatment (Fuzzy 1) Treatment (Fuzzy 2)

Outcome (Fuzzy 1, σε = 0.3 ) Outcome (Fuzzy 2, σε = 0.3)

Outcome (Fuzzy 1, σε = 0.6 ) Outcome (Fuzzy 2, σε = 0.6)

Note: The upper figures show average treatment rates in equally-sized bins of 0.1 which are
plotted against the forcing variables x and z where red (blue) dots indicate observations that
qualify (do not qualify) for treatment according to the treatment rule. The figures in the
two lower panels show average outcome rates plotted against the forcing variables x and z
where red (blue) dots indicate observations that did (did not) receive treatment. In addition
to determining the treatment probability, z affects the treatment effect via an interaction term
in the outcome equation. σε refers to the standard deviation of the error term in the outcome
function, while Fuzzy 1 (2) indicates a misassignment probability of 1/8 (1/4). Accordingly,
the greater is σε the less precise is the control function of x, and z, and Fuzzy 2 represents a
less precise relationship between the treatment the treatment rule than Fuzzy 1.



Figure 14: Heterogenous local average treatment effects (1-Way
Threshold)

Sharp RDD
Parametric Nonparametric

Fuzzy RDD
Parametric Nonparametric

Note: The figures show treatment effects at the x0 threshold (we restrict the sample to one
bin on each side of x0) plotted against the interaction variable z. All figures are based on
experiments with σε = 0.6 where the fuzzy design refers to a data-generating process with a
misassignment probability 1/6. The parametric figures are derived from an N = 202 · 6 sample.
For the nonparametric figures, we choose a bandwidth of 1/6. The green line illustrates the
true effect, the black line illustrates the point estimates, and the red lines represent the 90%
confidence intervals.
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Figure 15: Heterogenous local average treatment effects (2-Way
Threshold)

Sharp RDD
Parametric Nonparametric

Fuzzy RDD
Parametric Nonparametric

Note: The figures show treatment effects at the x0 threshold (we restrict the sample to one
bin on each side of x0) plotted against the interaction variable z. All figures are based on
experiments with σε = 0.6 where the fuzzy design refers to a data-generating process with
a misassignment probability 1/6. Note that the fuzzyness is bounded in the z dimension by
[-1.05, -0.15] which results in a lower degree of precision of the HLATE in this interval. The
parametric figures are derived from an N = 202 · 6 sample. For the nonparametric figures, we
choose a bandwidth of 1/6. The green line illustrates the true effect, the black line illustrates
the point estimates, and the red lines represent the 90% confidence intervals.
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Figure 16: Frequency plots

Human Capital (HC) Quality of Government (QoG)

Note: The two figures illustrate the number of observations in the human capital/per-capita
GDP bins and the quality of government/per-capita GDP bins, respectively. These bins corre-
spond to the ones used in Figure 3.
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