43 research outputs found

    P087, a lactococcal phage with a morphogenesis module similar to an Enterococcus faecalis prophage

    Get PDF
    The virulent lactococcal phage P087 was isolated from a dairy environment in 1978. This phage was then recognized as the reference member for one of the ten phage groups currently known to infect Lactococcus lactis strains. The double-stranded DNA genome of this Siphoviridae phage is composed of 60,074 bp and is circularly permuted. Five tRNA and 88 orfs were found within an uncommon genome architecture. Eleven structural proteins were also identified through SDS-PAGE and LC-MS/MS analyses. Of note, 11 translated orfs from the structural module of phage P087 have identities to gene products found in a prophage located in the genome of Enterococcus faecalis V583. The alignment of both genomic sequences suggests that DNA exchanges could occur between these two phages which are infecting low G+C bacteria found in similar ecological niches

    Alterations in Gut Microbiome in Cirrhosis as Assessed by Quantitative Metagenomics: Relationship With Acute-on-Chronic Liver Failure and Prognosis

    Get PDF
    Background and Aims: Cirrhosis is associated with changes in gut microbiome composition. Although acute-on-chronic liver failure (ACLF) is the most severe clinical stage of cirrhosis, there is lack of information about gut microbiome alterations in ACLF using quantitative metagenomics. We investigated the gut microbiome in patients with cirrhosis encompassing the whole spectrum of disease (compensated, acutely decompensated without ACLF, and ACLF). A group of healthy subjects was used as control subjects. Methods: Stool samples were collected prospectively in 182 patients with cirrhosis. DNA library construction and sequencing were performed using the Ion Proton Sequencer (ThermoFisher Scientific, Waltham, MA). Microbial genes were grouped into clusters, denoted as metagenomic species. Results: Cirrhosis was associated with a remarkable reduction in gene and metagenomic species richness compared with healthy subjects. This loss of richness correlated with disease stages and was particularly marked in patients with ACLF and persisted after adjustment for antibiotic therapy. ACLF was associated with a significant increase of Enterococcus and Peptostreptococcus sp and a reduction of some autochthonous bacteria. Gut microbiome alterations correlated with model for end-stage liver disease and Child-Pugh scores and organ failure and was associated with some complications, particularly hepatic encephalopathy and infections. Interestingly, gut microbiome predicted 3-month survival with good stable predictors. Functional analysis showed that patients with cirrhosis had enriched pathways related to ethanol production, γ-aminobutyric acid metabolism, and endotoxin biosynthesis, among others. Conclusions: Cirrhosis is characterized by marked alterations in gut microbiome that parallel disease stages with maximal changes in ACLF. Altered gut microbiome was associated with complications of cirrhosis and survival. Gut microbiome may contribute to disease progression and poor prognosis. These results should be confirmed in future studies

    Impairment of gut microbial biotin metabolism and host biotin status in severe obesity: effect of biotin and prebiotic supplementation on improved metabolism

    Get PDF
    Objectives Gut microbiota is a key component in obesity and type 2 diabetes, yet mechanisms and metabolites central to this interaction remain unclear. We examined the human gut microbiome\u27s functional composition in healthy metabolic state and the most severe states of obesity and type 2 diabetes within the MetaCardis cohort. We focused on the role of B vitamins and B7/B8 biotin for regulation of host metabolic state, as these vitamins influence both microbial function and host metabolism and inflammation. Design We performed metagenomic analyses in 1545 subjects from the MetaCardis cohorts and different murine experiments, including germ-free and antibiotic treated animals, faecal microbiota transfer, bariatric surgery and supplementation with biotin and prebiotics in mice. Results Severe obesity is associated with an absolute deficiency in bacterial biotin producers and transporters, whose abundances correlate with host metabolic and inflammatory phenotypes. We found suboptimal circulating biotin levels in severe obesity and altered expression of biotin-associated genes in human adipose tissue. In mice, the absence or depletion of gut microbiota by antibiotics confirmed the microbial contribution to host biotin levels. Bariatric surgery, which improves metabolism and inflammation, associates with increased bacterial biotin producers and improved host systemic biotin in humans and mice. Finally, supplementing high-fat diet-fed mice with fructo-oligosaccharides and biotin improves not only the microbiome diversity, but also the potential of bacterial production of biotin and B vitamins, while limiting weight gain and glycaemic deterioration. Conclusion Strategies combining biotin and prebiotic supplementation could help prevent the deterioration of metabolic states in severe obesity

    Recherche des fonctions biologiques de l'ADN polymérase DnaE de la bactérie à Gram-positif Bacillus subtilis

    No full text
    Résumé françaisRésumé anglaisORSAY-PARIS 11-BU Sciences (914712101) / SudocSudocFranceF

    Decompensated cirrhosis and microbiome interpretation : Qin et al. reply

    No full text
    Qin etal. reply J. S. Bajaj, N. S. Betrapally & P. M. Gillevet Nature 525, http://dx.doi.org/10.1038/nature14851International audienceThe diagnosis of cirrhosis, especially in the advanced/decompensated stages, is made using simple and inexpensive clinico-radiologic-pathological techniques1. Qin et al.2, whose paper has replicated prior studies, reported a relatively novel profile to diagnose cirrhosis using complex stool metagenomics

    KSY1, a lactococcal phage with a T7-like transcription

    Get PDF
    The virulent lactococcal phage KSY1 possesses a large elongated capsid (223 nm long, 45 nm wide) and a short tail (32 nm). This phage of the Podoviridae group (C3 morphotype) has a linear 79,232-bp double-stranded DNA genome, which encodes 131 putative proteins and 3 tRNAs. This is the first description of the genome of a phage of this morphotype. KSY1 possesses a T7-like transcription system, including an RNA polymerase and a series of specific promoters, showing sequence homology to other known T7-like RNA polymerase promoters. Late stages of KSY1 multiplication are resistant to rifampicin. Otherwise, KSY1 shares limited similarity with other Podoviridae phages. Fourteen KSY1 structural proteins were identified by SDS–PAGE analysis. Among these proteins, those forming the distal tail structure and likely involved in host recognition are encoded by a 5-kb genomic region of KSY1. This region consists of a mosaic of DNA segments highly homologous to DNA of other lactococcal phages, suggesting an horizontal gene transfer
    corecore