5 research outputs found

    Construction of a dairy microbial genome catalog opens new perspectives for the metagenomic analysis of dairy fermented products

    Get PDF
    Microbial communities of traditional cheeses are complex and insufficiently characterized. The origin, safety and functional role in cheese making of these microbial communities are still not well understood. Metagenomic analysis of these communities by high throughput shotgun sequencing is a promising approach to characterize their genomic and functional profiles. Such analyses, however, critically depend on the availability of appropriate reference genome databases against which the sequencing reads can be aligned. We built a reference genome catalog suitable for short read metagenomic analysis using a low-cost sequencing strategy. We selected 142 bacteria isolated from dairy products belonging to 137 different species and 67 genera, and succeeded to reconstruct the draft genome of 117 of them at a standard or high quality level, including isolates from the genera Kluyvera, Luteococcus and Marinilactibacillus, still missing from public database. To demonstrate the potential of this catalog, we analysed the microbial composition of the surface of two smear cheeses and one blue-veined cheese, and showed that a significant part of the microbiota of these traditional cheeses was composed of microorganisms newly sequenced in our study. Our study provides data, which combined with publicly available genome references, represents the most expansive catalog to date of cheese-associated bacteria. Using this extended dairy catalog, we revealed the presence in traditional cheese of dominant microorganisms not deliberately inoculated, mainly Gram-negative genera such as Pseudoalteromonas haloplanktis or Psychrobacter immobilis, that may contribute to the characteristics of cheese produced through traditional methods.https://doi.org/10.1186/1471-2164-15-110

    A metagenomic insight into our gut's microbiome

    No full text
    Advances in sequencing technology and the development of metagenomic and bioinformatics methods have opened up new ways to investigate the 10(14) microorganisms inhabiting the human gut. The gene composition of human gut microbiome in a large and deeply sequenced cohort highlighted an overall nonredundant genome size 150 times larger than the human genome. The in silico predictions based on metagenomic sequencing are now actively followed, compared and challenged using additional 'omics' technologies. Interactions between the microbiota and its host are of key interest in several pathologies and applying metaomics to describe the human gut microbiome will give a better understanding of this crucial crosstalk at mucosal interfaces. Adding to the growing appreciation of the importance of the microbiome is the discovery that numerous phages, that is, viruses of prokaryotes infecting bacteria (bacteriophages) or archaea with a high host specificity, inhabit the human gut and impact microbial activity. In addition, gene exchanges within the gut microbiota have proved to be more frequent than anticipated. Taken together, these innovative exploratory technologies are expected to unravel new information networks critical for gut homeostasis and human health. Among the challenges faced, the in vivo validation of these networks, together with their integration into the prediction and prognosis of disease, may require further working hypothesis and collaborative efforts

    Bacterial protein signals are associated with Crohn's disease

    Get PDF
    Objective No Crohn’s disease (CD) molecular maker has advanced to clinical use, and independent lines of evidence support a central role of the gut microbial community in CD. Here we explore the feasibility of extracting bacterial protein signals relevant to CD, by interrogating myriads of intestinal bacterial proteomes from a small number of patients and healthy controls. Design We first developed and validated a workflow—including extraction of microbial communities, two-dimensional difference gel electrophoresis (2D-DIGE), and LC-MS/MS—to discover protein signals from CD-associated gut microbial communities. Then we used selected reaction monitoring (SRM) to confirm a set of candidates. In parallel, we used 16S rRNA gene sequencing for an integrated analysis of gut ecosystem structure and functions. Results Our 2D-DIGE-based discovery approach revealed an imbalance of intestinal bacterial functions in CD. Many proteins, largely derived from Bacteroides species, were over-represented, while under-represented proteins were mostly from Firmicutes and some Prevotella members. Most overabundant proteins could be confirmed using SRM. They correspond to functions allowing opportunistic pathogens to colonise the mucus layers, breach the host barriers and invade the mucosae, which could still be aggravated by decreased host-derived pancreatic zymogen granule membrane protein GP2 in CD patients. Moreover, although the abundance of most protein groups reflected that of related bacterial populations, we found a specific independent regulation of bacteria-derived cell envelope proteins. Conclusions This study provides the first evidence that quantifiable bacterial protein signals are associated with CD, which can have a profound impact on future molecular diagnosis
    corecore