573 research outputs found

    És possible evitar un col·lapse de la civilització global?

    Get PDF
    En el número 48 de la revista L'Espill trobaràs un dossier monogràfic sobre "Cap a un col·lapse de la civilització industrial?", amb contribucions d'Antonio Turiel, Luc Semal, Ernest Garcia, Paul R. Ehrlich, Anne H. Ehrlich i Alain Gras. A més, articles d'Antoni Mora, François Rastier, Simona Škrabec, Joan Ramon Resina, Jacobo Muñoz Veiga, Faust Ripoll Domènech, Tobies Grimaltos Mascarós i Narcís Selles Rigat, així com documents del Manifest «Darrera crida», un full de dietari de Vicent Alonso i una conversa amb Tomàs Llorens

    Vertebrates on the Brink as Indicators of Biological Annihilation and the Sixth Mass Extinction

    Get PDF
    The ongoing sixth mass species extinction is the result of the destruction of component populations leading to eventual extirpation of entire species. Populations and species extinctions have severe implications for society through the degradation of ecosystem services. Here we assess the extinction crisis from a different perspective. We examine 29,400 species of terrestrial vertebrates, and determine which are on the brink of extinction because they have fewer than 1,000 individuals. There are 515 species on the brink (1.7% of the evaluated vertebrates). Around 94% of the populations of 77 mammal and bird species on the brink have been lost in the last century. Assuming all species on the brink have similar trends, more than 237,000 populations of those species have vanished since 1900. We conclude the human-caused sixth mass extinction is likely accelerating for several reasons. First, many of the species that have been driven to the brink will likely become extinct soon. Second, the distribution of those species highly coincides with hundreds of other endangered species, surviving in regions with high human impacts, suggesting ongoing regional biodiversity collapses. Third, close ecological interactions of species on the brink tend to move other species toward annihilation when they disappear—extinction breeds extinctions. Finally, human pressures on the biosphere are growing rapidly, and a recent example is the current coronavirus disease 2019 (Covid-19) pandemic, linked to wildlife trade. Our results reemphasize the extreme urgency of taking much-expanded worldwide actions to save wild species and humanity’s crucial life-support systems from this existential threat

    Therapies for bleomycin induced lung fibrosis through regulation of TGF-Β1 induced collagen gene expression

    Full text link
    This review describes normal and abnormal wound healing, the latter characterized by excessive fibrosis and scarring, which for lung can result in morbidity and sometimes mortality. The cells, the extracellular matrix (ECM) proteins, and the growth factors regulating the synthesis, degradation, and deposition of the ECM proteins will be discussed. Therapeutics with particular emphasis given to gene therapies and their effects on specific signaling pathways are described. Bleomycin (BM), a potent antineoplastic antibiotic increases TGF-Β1 transcription, TGF-Β1 gene expression, and TGF-Β protein. Like TGF-Β1, BM acts through the same distal promoter cis -element of the COL1A1 gene causing increased COL1 synthesis and lung fibrosis. Lung fibroblasts exist as subpopulations with one subset predominately responding to fibrogenic stimuli which could be a specific cell therapeutic target for the onset and development of pulmonary fibrosis. J. Cell. Physiol. 211: 585–589, 2007. © 2007 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/55994/1/20972_ftp.pd

    Death and transfiguration in static staphylococcus epidermidis cultures

    Get PDF
    The overwhelming majority of bacteria live in slime embedded microbial communities termed biofilms, which are typically adherent to a surface. However, when several Staphylococcus epidermidis strains were cultivated in static liquid cultures, macroscopic aggregates were seen floating within the broth and also sedimented at the test tube bottom. Light- and electron microscopy revealed that early-stage aggregates consisted of bacteria and extracellular matrix, organized in sheetlike structures. Perpendicular under the sheets hung a network of periodically arranged, bacteria-associated strands. During the extended cultivation, the strands of a subpopulation of aggregates developed into cross-connected wall-like structures, in which aligned bacteria formed the walls. The resulting architecture had a compartmentalized appearance. In late-stage cultures, the wall-associated bacteria disintegrated so that, henceforth, the walls were made of the coalescing remnants of lysed bacteria, while the compartment-like organization remained intact. At the same time, the majority of strand containing aggregates with associated culturable bacteria continued to exist. These observations indicate that some strains of Staphylococcus epidermidis are able to build highly sophisticated structures, in which a subpopulation undergoes cell lysis, presumably to provide continued access to nutrients in a nutrient-limited environment, whilst maintaining structural integrity

    Interleukin-8 levels and activity in delayed-healing human thermal wounds

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72020/1/j.1524-475x.2000.00216.x.pd

    Acute dosing of latrepirdine (Dimebon), a possible Alzheimer therapeutic, elevates extracellular amyloid-beta levels in vitro and in vivo.

    Get PDF
    BACKGROUND: Recent reports suggest that latrepirdine (Dimebon, dimebolin), a retired Russian antihistamine, improves cognitive function in aged rodents and in patients with mild to moderate Alzheimer's disease (AD). However, the mechanism(s) underlying this benefit remain elusive. AD is characterized by extracellular accumulation of the amyloid-beta (Abeta) peptide in the brain, and Abeta-lowering drugs are currently among the most popular anti-amyloid agents under development for the treatment of AD. In the current study, we assessed the effect of acute dosing of latrepirdine on levels of extracellular Abeta using in vitro and in vivo experimental systems. RESULTS: We evaluated extracellular levels of Abeta in three experimental systems, under basal conditions and after treatment with latrepirdine. Mouse N2a neuroblastoma cells overexpressing Swedish APP were incubated for 6 hr in the presence of either vehicle or vehicle + latrepirdine (500pM-5 muM). Synaptoneurosomes were isolated from TgCRND8 mutant APP-overexpressing transgenic mice and incubated for 0 to 10 min in the absence or presence of latrepirdine (1 muM or 10 muM). Drug-naïve Tg2576 Swedish mutant APP overexpressing transgenic mice received a single intraperitoneal injection of either vehicle or vehicle + latrepirdine (3.5 mg/kg). Picomolar to nanomolar concentrations of acutely administered latrepirdine increased the extracellular concentration of Abeta in the conditioned media from Swedish mutant APP-overexpressing N2a cells by up to 64% (p = 0.01), while a clinically relevant acute dose of latrepirdine administered i.p. led to an increase in the interstitial fluid of freely moving APP transgenic mice by up to 40% (p = 0.01). Reconstitution of membrane protein trafficking and processing is frequently inefficient, and, consistent with this interpretation, latrepirdine treatment of isolated TgCRND8 synaptoneurosomes involved higher concentrations of drug (1-10 muM) and led to more modest increases in extracellular Abeta(x-42 )levels (+10%; p = 0.001); of note, however, was the observation that extracellular Abeta(x-40 )levels did not change. CONCLUSIONS: Here, we report the surprising association of acute latrepirdine dosing with elevated levels of extracellular Abeta as measured in three independent neuron-related or neuron-derived systems, including the hippocampus of freely moving Tg2576 mice. Given the reported association of chronic latrepirdine treatment with improvement in cognitive function, the effects of chronic latrepirdine treatment on extracellular Abeta levels must now be determined.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    The five dimensions of B cell tolerance

    Full text link
    B cell tolerance has been generally understood to be an acquired property of the immune system that governs antibody specificity in ways that avoid auto‐toxicity. As useful as this understanding has proved, it fails to fully explain the existence of auto‐reactive specificities in healthy individuals and contribution these may have to health. Mechanisms underlying B cell tolerance are considered to select a clonal repertoire that generates a collection of antibodies that do not bind self, ie tolerance operates more or less in three dimensions that largely spare autologous cells and antigens. Yet, most B lymphocytes in humans and probably in other vertebrates are auto‐reactive and absence of these auto‐reactive B cells is associated with disease. We suggest that auto‐reactivity can be embodied by extending the concept of tolerance by two further dimensions, one of time and circumstance and one that allows healthy cells to actively resist injury. In this novel concept, macromolecular recognition by the B cell receptor leading to deletion, anergy, receptor editing or B cell activation is extended by taking account of the time of development of normal immune responses (4th dimension) and the accommodation (or tolerance) of normal cells to bound antibody, activation of complement, and interaction with inflammatory cells (fifth dimension). We discuss how these dimensions contribute to understanding B cell biology in health or disease.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153034/1/imr12813.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153034/2/imr12813_am.pd
    corecore