185 research outputs found

    Orientational and Translational Cooling in Two Dimensional Systems of Granular Needles

    Get PDF
    We present molecular dynamics results of a two-dimensional gas of inelastic needles. At high number densities such a system forms a macroscopically ordered nematic phase. A simple dissipation model is introduced which takes into account geometry and number density of interacting bodies. Freely cooling of the dissipative system leads to  orientational clusters (bundles), local inelastic collapse and decrease of the order parameter

    Liquid phase epitaxy and optical investigation of KYb(WO4)2 thin layers

    Get PDF
    In recent years, Yb3+ has attracted much attention as an activating ion because of its small quantum defect for laser emission from 2F5/2 to 2F7/2 at ~1.03 µm [1], which provides high efficiency and reduced heat generation. Of high practical interest is the thin-disk laser concept [2], which possesses a tremendous advantage over rod lasers because of its axial-cooling approach and consequent weak thermal lensing and good beam quality.\ud A promising material for Yb3+ thin-disk lasers is KYb(WO4)2 (KYbW) [3]. It can be grown from high-temperature solutions [4]. Nevertheless, the growth of high-quality, single-crystalline layers with thickness in the range of the absorption length of ~13 µm at 981 nm has as yet not been reported. A suitable substrate material is KY(WO4)2 (KYW), but the relatively large differences in the thermal expansion coefficients between KYW and KYbW along the [100], [001], and especially [010] directions [5] favor low temperatures for the hetero-epitaxial growth.\ud For the first time, we demonstrate liquid phase epitaxy (LPE) of KYbW layers. The layers were grown at start temperatures as low as 520°C, which is favorable in order to decrease the thermal stresses due to the differences in the thermal expansion coefficients of substrate and layer. Moreover, the choice of [010]-oriented substrates bypasses the large difference in the thermal expansion coefficient along the [010] direction. KY1-xYbx(WO4)2 layers with varying x = 0.03-1.00 were grown by LPE. The chloride solvent consisted of the eutectic composition [6] 24.4 mol.% KCl, 30.4 mol.% NaCl, and 42.2 mol.% CsCl. The growth temperature spanned the range from 580 to 500°C and the cooling rate was 0.67-1.00 Kh-1. Crack-free, transparent KYbW layers were grown on (010) substrates.\ud Spectroscopic investigations have shown that the lifetime of ~250 µs measured in our LPE-grown KYbW layers is dominated by radiative decay and is very similar to that measured in top-seeded-solution-grown bulk samples [4]. Fast energy migration among the Yb3+ ions and energy transfer to small amounts of Tm3+ and Er3+ ions present in the YbCl3 reagent lead to visible upconversion luminescence in the layers under 981-nm excitation.\ud \ud [1] T.Y. Fan, IEEE J. Quantum Electron. 29, 1457 (1993).\ud [2] A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, H. Opower, Appl. Phys. B 58, 365 (1994).\ud [3] P. Klopp, U. Griebner, V. Petrov, X. Mateos, M.A. Bursukova, M.C. Pujol, R. Solé, J. Gavaldà, M. Aguiló, F. Güell, J. Massons, T. Kirilov, F. Díaz, Appl. Phys. B 74, 185 (2002).\ud [4] M.C. Pujol, M.A. Bursukova, F. Güell, X. Mateos, R. Solé, J. Gavaldà, M. Aguiló, J. Massons, F. Díaz, P. Klopp, U. Griebner, V. Petrov, Phys. Rev. B 65, 165121 (2002).\ud [5] M.C. Pujol, X. Mateos, R. Solé, J. Massons, J. Gavaldà, F. Díaz, M. Aguiló, Mater. Sci. Forum 378-381, 710 (2001).\ud [6] D. Ehrentraut, M. Pollnau, S. Kück, Appl. Phys. B 75, 59 (2002)

    Liquid phase epitaxy and spectroscopic investigation of optically active KYb(WO4)2 thin layers

    Get PDF
    In recent years, Yb3+ has attracted much attention as an activating ion because of its small quantum defect for laser emission from 2F5/2 to 2F7/2 at ~1.03 µm, which provides high efficiency and reduced heat generation. A promising material for Yb3+ lasers is KYb(WO4)2 (KYbW) [1]. It can be grown from high-temperature solutions [2]. A suitable substrate material for the growth of single-crystalline layers with thicknesses in the range of the absorption length of ~13 µm at 981 nm is KY(WO4)2 (KYW).\ud We demonstrate the liquid phase epitaxy (LPE) of KYbW layers at start temperatures as low as 520°C from the chloride solvent KCl-NaCl-CsCl. This temperature is favorable in order to decrease the thermal stresses due to the differences in the thermal expansion coefficients of substrate and layer. Moreover, the choice of [010]-oriented KYW substrates bypasses the large difference in the thermal expansion coefficient along the [010] direction. Our spectroscopic investigations show that the fluorescence lifetime of ~250 µs measured in our LPE-grown KYbW layers is dominated by radiative decay and is very similar to that measured in top-seeded-solution-grown bulk samples [2]. Fast energy migration among the Yb3+ ions and energy transfer to small amounts of Tm3+ and Er3+ ions present in the YbCl3 reagent lead to visible upconversion luminescence in the layers under 981-nm excitation.\ud \ud [1] P. Klopp, U. Griebner, V. Petrov, X. Mateos, M.A. Bursukova, M.C. Pujol, R. Solé, J. Gavaldà, M. Aguiló, F. Güell, J. Massons, T. Kirilov, F. Díaz, Appl. Phys. B 2002, 74, 185\ud [2] M.C. Pujol, M.A. Bursukova, F. Güell, X. Mateos, R. Solé, J. Gavaldà, M. Aguiló, J. Massons, F. Díaz, P. Klopp, U. Griebner, V. Petrov, Phys. Rev. B 2002, 65, 16512

    Prospects of target nanostructuring for laser proton acceleration

    Get PDF
    In laser-based proton acceleration, nanostructured targets hold the promise to allow for significantly boosted proton energies due to strong increase of laser absorption. We used laser-induced periodic surface structures generated in-situ as a very fast and economic way to produce nanostructured targets capable of high-repetition rate applications. Both in experiment and theory, we investigate the impact of nanostructuring on the proton spectrum for different laser-plasma conditions. Our experimental data show that the nanostructures lead to a significant enhancement of absorption over the entire range of laser plasma conditions investigated. At conditions that do not allow for efficient laser absorption by plane targets, i.e. too steep plasma gradients, nanostructuring is found to significantly enhance the proton cutoff energy and conversion efficiency. In contrast, if the plasma gradient is optimized for laser absorption of the plane target, the nanostructure-induced absorption increase is not reflected in higher cutoff energies. Both, simulation and experiment point towards the energy transfer from the laser to the hot electrons as bottleneck

    Pleiotropic effects of levofloxacin, fluoroquinolone antibiotics, against influenza virus-induced lung injury

    Get PDF
    © 2015 Enoki et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Reactive oxygen species (ROS) and nitric oxide (NO) are major pathogenic molecules produced during viral lung infections, including influenza. While fluoroquinolones are widely used as antimicrobial agents for treating a variety of bacterial infections, including secondary infections associated with the influenza virus, it has been reported that they also function as anti-oxidants against ROS and as a NO regulator. Therefore, we hypothesized that levofloxacin (LVFX), one of the most frequently used fluoroquinolone derivatives, may attenuate pulmonary injuries associated with influenza virus infections by inhibiting the production of ROS species such as hydroxyl radicals and neutrophil-derived NO that is produced during an influenza viral infection. The therapeutic impact of LVFX was examined in a PR8 (H1N1) influenza virus-induced lung injury mouse model. ESR spin-trapping experiments indicated that LVFX showed scavenging activity against neutrophil-derived hydroxyl radicals. LVFX markedly improved the survival rate of mice that were infected with the influenza virus in a dose-dependent manner. In addition, the LVFX treatment resulted in a dose-dependent decrease in the level of 8-hydroxy-2'-deoxyguanosine (a marker of oxidative stress) and nitrotyrosine (a nitrative marker) in the lungs of virus-infected mice, and the nitrite/nitrate ratio (NO metabolites) and IFN-? in BALF. These results indicate that LVFX may be of substantial benefit in the treatment of various acute inflammatory disorders such as influenza virus-induced pneumonia, by inhibiting inflammatory cell responses and suppressing the overproduction of NO in the lungs

    Sub-Telomeric core X and Y' Elements in S.cerevisiae Suppress Extreme Variations in Gene Silencing

    Get PDF
    Telomere Position Effect (TPE) is governed by strong repression signals emitted by telomeres via the Sir2/3/4 Histone Deacetylase complex. These signals are then relayed by weak proto-silencers residing in the subtelomeric core X and Y' elements. Subtelomeres also contain Sub-Telomeric Anti-silencing Regions (STARs). In this study we have prepared telomeres built of different combinations of core X, Y' and STARs and have analyzed them in strains lacking Histone-Acetyltransferase genes as well as in cdc6-1 and Δrif1 strains. We show that core X and Y' dramatically reduce both positive and negative variations in TPE, that are caused by these mutations. We also show that the deletion of Histone-Acetyltransferase genes reduce the silencing activity of an ACS proto-silencer, but also reduce the anti-silencing activity of a STAR. We postulate that core X and Y' act as epigenetic “cushioning” cis-elements

    Adora2b Adenosine Receptor Engagement Enhances Regulatory T Cell Abundance during Endotoxin-Induced Pulmonary Inflammation

    Get PDF
    Anti-inflammatory signals play an essential role in constraining the magnitude of an inflammatory response. Extracellular adenosine is a critical tissue-protective factor, limiting the extent of inflammation. Given the potent anti-inflammatory effects of extracellular adenosine, we sought to investigate how extracellular adenosine regulates T cell activation and differentiation. Adenosine receptor activation by a pan adenosine-receptor agonist enhanced the abundance of murine regulatory T cells (Tregs), a cell type critical in constraining inflammation. Gene expression studies in both naïve CD4 T cells and Tregs revealed that these cells expressed multiple adenosine receptors. Based on recent studies implicating the Adora2b in endogenous anti-inflammatory responses during acute inflammation, we used a pharmacologic approach to specifically activate Adora2b. Indeed, these studies revealed robust enhancement of Treg differentiation in wild-type mice, but not in Adora2b−/− T cells. Finally, when we subjected Adora2b-deficient mice to endotoxin-induced pulmonary inflammation, we found that these mice experienced more severe inflammation, characterized by increased cell recruitment and increased fluid leakage into the airways. Notably, Adora2b-deficient mice failed to induce Tregs after endotoxin-induced inflammation and instead had an enhanced recruitment of pro-inflammatory effector T cells. In total, these data indicate that the Adora2b adenosine receptor serves a potent anti-inflammatory role, functioning at least in part through the enhancement of Tregs, to limit inflammation
    corecore