research

Liquid phase epitaxy and spectroscopic investigation of optically active KYb(WO4)2 thin layers

Abstract

In recent years, Yb3+ has attracted much attention as an activating ion because of its small quantum defect for laser emission from 2F5/2 to 2F7/2 at ~1.03 µm, which provides high efficiency and reduced heat generation. A promising material for Yb3+ lasers is KYb(WO4)2 (KYbW) [1]. It can be grown from high-temperature solutions [2]. A suitable substrate material for the growth of single-crystalline layers with thicknesses in the range of the absorption length of ~13 µm at 981 nm is KY(WO4)2 (KYW).\ud We demonstrate the liquid phase epitaxy (LPE) of KYbW layers at start temperatures as low as 520°C from the chloride solvent KCl-NaCl-CsCl. This temperature is favorable in order to decrease the thermal stresses due to the differences in the thermal expansion coefficients of substrate and layer. Moreover, the choice of [010]-oriented KYW substrates bypasses the large difference in the thermal expansion coefficient along the [010] direction. Our spectroscopic investigations show that the fluorescence lifetime of ~250 µs measured in our LPE-grown KYbW layers is dominated by radiative decay and is very similar to that measured in top-seeded-solution-grown bulk samples [2]. Fast energy migration among the Yb3+ ions and energy transfer to small amounts of Tm3+ and Er3+ ions present in the YbCl3 reagent lead to visible upconversion luminescence in the layers under 981-nm excitation.\ud \ud [1] P. Klopp, U. Griebner, V. Petrov, X. Mateos, M.A. Bursukova, M.C. Pujol, R. Solé, J. Gavaldà, M. Aguiló, F. Güell, J. Massons, T. Kirilov, F. Díaz, Appl. Phys. B 2002, 74, 185\ud [2] M.C. Pujol, M.A. Bursukova, F. Güell, X. Mateos, R. Solé, J. Gavaldà, M. Aguiló, J. Massons, F. Díaz, P. Klopp, U. Griebner, V. Petrov, Phys. Rev. B 2002, 65, 16512

    Similar works

    Available Versions

    Last time updated on 14/10/2017