1,040 research outputs found

    The phosphate balance : current developments and future outlook

    Get PDF
    Phosphate is essential for agricultural production and therefore plays a key role in the global production of food and biofuels. There are no agricultural alternatives for phosphate, and a substantial fraction of our annual phosphate consumption is dispersed into the environment where it is largely lost to agriculture. Phosphate is an irreplaceable, and to a considerable extent non-renewable, resource that is being exploited at an ever increasing rate. The ongoing depletion of phosphate resources combined with recently increased phosphate prices urge us to reconsider our phosphate consumption patterns. In addition to economic and geo-political reasons, further reducing phosphate consumption would moreover be beneficial to the quality of our environment. Even if we increase the reserve base, for which there are plenty of opportunities, it is clear that the phosphate industry will sooner or later have to make a switch from a reserve-based industry to a recycling industry

    X-ray bright active galactic nuclei in massive galaxy clusters III: New insights into the triggering mechanisms of cluster AGN

    Full text link
    We present the results of a new analysis of the X-ray selected Active Galactic Nuclei (AGN) population in the vicinity of 135 of the most massive galaxy clusters in the redshift range of 0.2 < z < 0.9 observed with Chandra. With a sample of more than 11,000 X-ray point sources, we are able to measure, for the first time, evidence for evolution in the cluster AGN population beyond the expected evolution of field AGN. Our analysis shows that overall number density of cluster AGN scales with the cluster mass as ∼M500−1.2\sim M_{500}^{-1.2}. There is no evidence for the overall number density of cluster member X-ray AGN depending on the cluster redshift in a manner different than field AGN, nor there is any evidence that the spatial distribution of cluster AGN (given in units of the cluster overdensity radius r_500) strongly depends on the cluster mass or redshift. The M−1.2±0.7M^{-1.2 \pm 0.7} scaling relation we measure is consistent with theoretical predictions of the galaxy merger rate in clusters, which is expected to scale with the cluster velocity dispersion, σ\sigma, as ∼σ−3 \sim \sigma^{-3} or ∼M−1\sim M^{-1}. This consistency suggests that AGN in clusters may be predominantly triggered by galaxy mergers, a result that is further corroborated by visual inspection of Hubble images for 23 spectroscopically confirmed cluster member AGN in our sample. A merger-driven scenario for the triggering of X-ray AGN is not strongly favored by studies of field galaxies, however, suggesting that different mechanisms may be primarily responsible for the triggering of cluster and field X-ray AGN.Comment: 21 Pages, 8 figures, 5 tables. Submitted to MNRAS. Comments are welcome, and please request Steven Ehlert for higher resolution figure

    Latitudinal variations of δ30Si and δ15N signatures along the Peruvian shelf: quantifying the effects of nutrient utilization versus denitrification over the past 600 years

    Get PDF
    The sedimentary stable nitrogen isotope compositions of bulk organic matter (δ15Nbulk) and silicon isotope composition of diatoms (δ30SiBSi) both mainly reflect the degree of past nutrient utilization by primary producers. However, in ocean areas where anoxic and suboxic conditions prevail, the δ15Nbulk signal ultimately recorded within the sediments is also influenced by water column denitrification causing an increase in the subsurface δ15N signature of dissolved nitrate (δ15NO3−) upwelled to the surface. Such conditions are found in the oxygen minimum zone off Peru, where at present an increase in subsurface δ15NO3− from North to South along the shelf is observed due to ongoing denitrification within the pole-ward flowing subsurface waters, while the δ30Si signature of silicic acid (δ30Si(OH)4) at the same time remains unchanged. Here, we present three new δ30SiBSi records between 11° S and 15° S and compare these to previously published δ30SiBSi and δ15Nbulk records from Peru covering the past 600 years. We present a new approach to calculate past subsurface δ15NO3− signatures based on the correlation of δ30SiBSi and δ15Nbulk signatures at a latitudinal resolution for different time periods. Our results show source water δ15NO3− compositions during the last 200 years, the Current Warm Period (CWP) and during short-term arid events prior to that, which are close to modern values increasing southward from 7 to 10 ‰ (between 11° S and 15° S). In contrast, humid conditions during the Little Ice Age (LIA) reflect consistently low δ15NO3− values between 6 and 7.5‰. Furthermore, we are able to relate the short-term variability in both isotope compositions to changes in the ratio of nutrients (NO3− : Si(OH)4) taken up by different dominating phytoplankton groups (diatoms and non-siliceous phytoplankton) under the variable climatic conditions of the past 600 years

    Impaired M3 and enhanced M2 muscarinic receptor contractile function in a streptozotocin model of mouse diabetic urinary bladder

    Get PDF
    We investigated the contractile roles of M2 and M3 muscarinic receptors in urinary bladder from streptozotocin-treated mice. Wild-type and M2 muscarinic receptor knockout (M2 KO) mice were given a single injection of vehicle or streptozotocin (125 mg kg−1) 2–24 weeks prior to bladder assays. The effect of forskolin on contractions elicited to the muscarinic agonist, oxotremorine-M, was measured in isolated urinary bladder (intact or denuded of urothelium). Denuded urinary bladder from vehicle-treated wild-type and M2 KO mice exhibited similar contractile responses to oxotremorine-M, when contraction was normalized relative to that elicited by KCl (50 mM). Eight to 9 weeks after streptozotocin treatment, the EC50 value of oxotremorine-M increased 3.1-fold in urinary bladder from the M2 KO mouse (N = 5) compared to wild type (N = 6; P < 0.001). Analogous changes were observed in intact bladder. In denuded urinary bladder from vehicle-treated mice, forskolin (5 µM) caused a much greater inhibition of contraction in M2 KO bladder compared to wild type. Following streptozotocin treatment, this forskolin effect increased 1.6-fold (P = 0.032). At the 20- to 24-week time point, the forskolin effect increased 1.7-fold for denuded as well as intact bladders (P = 0.036, 0.01, respectively). Although streptozotocin treatment inhibits M3 receptor-mediated contraction in denuded urinary bladder, muscarinic contractile function is maintained in wild-type bladder by enhanced M2 contractile function. M2 receptor activation opposes forskolin-induced relaxation of the urinary bladder, and this M2 function is enhanced following streptozotocin treatment

    X-ray Bright Active Galactic Nuclei in Massive Galaxy Clusters II: The Fraction of Galaxies Hosting Active Nuclei

    Full text link
    We present a measurement of the fraction of cluster galaxies hosting X-ray bright Active Galactic Nuclei (AGN) as a function of clustercentric distance scaled in units of r500r_{500}. Our analysis employs high quality Chandra X-ray and Subaru optical imaging for 42 massive X-ray selected galaxy cluster fields spanning the redshift range of 0.2<z<0.70.2 < z < 0.7. In total, our study involves 176 AGN with bright (R<23R <23) optical counterparts above a 0.5−8.00.5-8.0 keV flux limit of 10−14erg cm−2 s−110^{-14} \rm{erg} \ \rm{cm}^{-2} \ \rm{s}^{-1}. When excluding central dominant galaxies from the calculation, we measure a cluster-galaxy AGN fraction in the central regions of the clusters that is ∼3\sim 3 times lower that the field value. This fraction increases with clustercentric distance before becoming consistent with the field at ∼2.5r500\sim 2.5 r_{500}. Our data exhibit similar radial trends to those observed for star formation and optically selected AGN in cluster member galaxies, both of which are also suppressed near cluster centers to a comparable extent. These results strongly support the idea that X-ray AGN activity and strong star formation are linked through their common dependence on available reservoirs of cold gas.Comment: 9 Pages, 4 Figures, accepted for publication in MNRAS, please contact Steven Ehlert ([email protected]) with any querie

    Latitudinal variations in δ30Si and δ15N signatures along the Peruvian shelf: quantifying the effects of nutrient utilization versus denitrification over the past 600 years

    Get PDF
    The sedimentary stable nitrogen isotope compositions of bulk organic matter (δ15Nbulk) and silicon isotope composition of diatoms (δ30SiBSi) both mainly reflect the degree of past nutrient utilization by primary producers. However, in ocean areas where anoxic and suboxic conditions prevail, the δ15Nbulk signal ultimately recorded within the sediments is also influenced by water column denitrification causing an increase in the subsurface δ15N signature of dissolved nitrate (δ15NO3−) upwelled to the surface. Such conditions are found in the oxygen minimum zone off Peru, where at present an increase in subsurface δ15NO3− from North to South along the shelf is observed due to ongoing denitrification within the pole-ward flowing subsurface waters, while the δ30Si signature of silicic acid (δ30Si(OH)4) at the same time remains unchanged. Here, we present three new δ30SiBSi records between 11° S and 15° S and compare these to previously published δ30SiBSi and δ15Nbulk records from Peru covering the past 600 years. We present a new approach to calculate past subsurface δ15NO3− signatures based on the correlation of δ30SiBSi and δ15Nbulk signatures at a latitudinal resolution for different time periods. Our results show source water δ15NO3− compositions during the last 200 years, the Current Warm Period (CWP) and during short-term arid events prior to that, which are close to modern values increasing southward from 7 to 10 ‰ (between 11° S and 15° S). In contrast, humid conditions during the Little Ice Age (LIA) reflect consistently low δ15NO3− values between 6 and 7.5‰. Furthermore, we are able to relate the short-term variability in both isotope compositions to changes in the ratio of nutrients (NO3− : Si(OH)4) taken up by different dominating phytoplankton groups (diatoms and non-siliceous phytoplankton) under the variable climatic conditions of the past 600 years

    Probing the extreme realm of AGN feedback in the massive galaxy cluster, RX J1532.9+3021

    Full text link
    We present a detailed Chandra, XMM-Newton, VLA and HST analysis of one of the strongest cool core clusters known, RX J1532.9+3021 (z=0.3613). Using new, deep 90 ks Chandra observations, we confirm the presence of a western X-ray cavity or bubble, and report on a newly discovered eastern X-ray cavity. The total mechanical power associated with these AGN-driven outflows is (22+/-9)*10^44 erg/s, and is sufficient to offset the cooling, indicating that AGN feedback still provides a viable solution to the cooling flow problem even in the strongest cool core clusters. Based on the distribution of the optical filaments, as well as a jet-like structure seen in the 325 MHz VLA radio map, we suggest that the cluster harbours older outflows along the north to south direction. The jet of the central AGN is therefore either precessing or sloshing-induced motions have caused the outflows to change directions. There are also hints of an X-ray depression to the north aligned with the 325 MHz jet-like structure, which might represent the highest redshift ghost cavity discovered to date. We further find evidence of a cold front (r=65kpc) that coincides with the outermost edge of the western X-ray cavity and the edge of the radio mini-halo. The common location of the cold front with the edge of the radio mini-halo supports the idea that the latter originates from electrons being reaccelerated due to sloshing induced turbulence. Alternatively, its coexistence with the edge of the X-ray cavity may be due to cool gas being dragged out by the outburst. We confirm that the central AGN is highly sub-Eddington and conclude that a >10^10M_Sun or a rapidly spinning black hole is favoured to explain both the radiative-inefficiency of the AGN and the powerful X-ray cavities.Comment: Accepted for publication to ApJ (minor corrections), 16 pages, 16 figures, 5 tables. Full resolution at http://www.stanford.edu/~juliehl/M1532

    Pathology Associated with AAV Mediated Expression of Beta Amyloid or C100 in Adult Mouse Hippocampus and Cerebellum

    Get PDF
    Accumulation of beta amyloid (Ab) in the brain is a primary feature of Alzheimer’s disease (AD) but the exact molecular mechanisms by which Ab exerts its toxic actions are not yet entirely clear. We documented pathological changes 3 and 6 months after localised injection of recombinant, bi-cistronic adeno-associated viral vectors (rAAV2) expressing human Ab40- GFP, Ab42-GFP, C100-GFP or C100V717F-GFP into the hippocampus and cerebellum of 8 week old male mice. Injection of all rAAV2 vectors resulted in wide-spread transduction within the hippocampus and cerebellum, as shown by expression of transgene mRNA and GFP protein. Despite the lack of accumulation of Ab protein after injection with AAV vectors, injection of rAAV2-Ab42-GFP and rAAV2- C100V717F-GFP into the hippocampus resulted in significantly increased microgliosis and altered permeability of the blood brain barrier, the latter revealed by high levels of immunoglobulin G (IgG) around the injection site and the presence of IgG positive cells. In comparison, injection of rAAV2-Ab40-GFP and rAAV2-C100-GFP into the hippocampus resulted in substantially less neuropathology. Injection of rAAV2 vectors into the cerebellum resulted in similar types of pathological changes, but to a lesser degree. The use of viral vectors to express different types of Ab and C100 is a powerful technique with which to examine the direct in vivo consequences of Ab expression in different regions of the mature nervous system and will allow experimentation and analysis of pathological AD-like changes in a broader range of species other than mouse
    • …
    corecore