4,270 research outputs found

    Prediction of unsteady aerodynamic loadings caused by leading edge and trailing edge control surface motions in subsonic compressible flow: Analysis and results

    Get PDF
    A theoretical analysis and computer program was developed for the prediction of unsteady lifting surface loadings caused by motions of leading edge and trailing edge control surfaces having sealed gaps. The final form of the downwash integral equation was formulated by isolating the singularities from the nonsingular terms and using a preferred solution process to remove and evaluate the downwash discontinuities in a systematic manner. Comparisons of theoretical and experimental pressure data are made for several control surface configurations. The comparisons indicate that reasonably accurate theoretical pressure distributions and generalized forces may be obtained for a wide variety of control surface configurations. Spanwise symmetry or antisymmetry of motion, and up to six control surfaces on each half span can be accommodated

    Gravitational Lensing Bound On The Average Redshift Of Gamma Ray Bursts In Models With Evolving Lenses

    Full text link
    Identification of gravitationally lensed Gamma Ray Bursts (GRBs) in the BATSE 4B catalog can be used to constrain the average redshift of the GRBs. In this paper we investigate the effect of evolving lenses on the of GRBs in different cosmological models of universe. The cosmological parameters $\Omega$ and $\Lambda$ have an effect on the of GRBs. The other factor which can change the istheevolutionofgalaxies.Weconsiderthreeevolutionarymodelofgalaxies.Inparticular,wefindthattheupperlimiton is the evolution of galaxies. We consider three evolutionary model of galaxies. In particular, we find that the upper limit on of GRBs is higher in evolving model of galaxies as compared to non-evolving models of galaxies.Comment: 23 pages,one plain LaTeX file with three postscript figures This is modified version with recent BATSE efficiency parameter and with the latest F paramete

    Antiferromagnetic ordering and dipolar interactions of YbAlO3_3

    Full text link
    In this paper we report low-temperature magnetic properties of the rare-earth perovskite material YbAlO3_3. Results of elastic and inelastic neutron scattering experiment, magnetization measurements along with the crystalline electrical field (CEF) calculations suggest that the ground state of Yb moments is a strongly anisotropic Kramers doublet, and the moments are confined in the abab-plane, pointing at an angle of φ=±23.5∘\varphi = \pm 23.5^{\circ} to the aa-axis. With temperature decreasing below TN=0.88T_{\rm N}=0.88 K, Yb moments order into the coplanar, but non-collinear antiferromagnetic (AFM) structure AxGyAxGy, where the moments are pointed along their easy-axes. In addition, we highlight the importance of the dipole-dipole interaction, which selects the type of magnetic ordering and may be crucial for understanding magnetic properties of other rare-earth orthorhombic perovskites. Further analysis of the broad diffuse neutron scattering shows that one-dimensional interaction along the cc-axis is dominant, and suggests YbAlO3_3 as a new member of one dimensional quantum magnets.Comment: 8 pages, 6 figure

    Liouville equations for neutrino distribution matrices

    Full text link
    The classical notion of a single-particle scalar distribution function or phase space density can be generalized to a matrix in order to accommodate superpositions of states of discrete quantum numbers, such as neutrino mass/flavor. Such a `neutrino distribution matrix' is thus an appropriate construct to describe a neutrino gas that may vary in space as well as time and in which flavor mixing competes with collisions. The Liouville equations obeyed by relativistic neutrino distribution matrices, including the spatial derivative and vacuum flavor mixing terms, can be explicitly but elegantly derived in two new ways: from a covariant version of the familiar simple model of flavor mixing, and from the Klein-Gordon equations satisfied by a quantum `density function' (mean value of paired quantum field operators). Associated with the latter derivation is a case study in how the joint position/momentum dependence of a classical gas (albeit with Fermi statistics) emerges from a formalism built on quantum fields.Comment: 17 pages. Version accepted for publication in Phys. Rev. D. Section II shortened; some changes in notation that mostly affect Section III through Subsubsec. IIIC2; revised argument and swapping of Subsubsections IIIC1 and IIIC

    Morgan-Morgan-NUT disk space via the Ehlers transformation

    Full text link
    Using the Ehlers transformation along with the gravitoelectromagnetic approach to stationary spacetimes we start from the Morgan-Morgan disk spacetime (without radial pressure) as the seed metric and find its corresponding stationary spacetime. As expected from the Ehlers transformation the stationary spacetime obtained suffers from a NUT-type singularity and the new parameter introduced in the stationary case could be interpreted as the gravitomagnetic monopole charge (or the NUT factor). As a consequence of this singularity there are closed timelike curves (CTCs) in the singular region of the spacetime. Some of the properties of this spacetime including its particle velocity distribution, gravitational redshift, stability and energy conditions are discussed.Comment: 18 pages, 5 figures, RevTex 4, replaced with the published versio
    • …
    corecore