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PREDICTION OF UNSTEADY AERODYNAMIC LOADINGS CAUSED BY LEADING 
EDGE AND TRAILING EDGE CONTROL  SURFACE  MOTIONS I N  SUBSONIC 

COMPRESSIBLE  FLOW--ANALYSIS AND RESULTS 

W. S .  ROWE, M. C. REDMAN 
F. E. EHLERS and J. D. SEBASTIAN 

Boeing Connnerci a1 Airplane Company 

SUMMARY 

A theore t ica l   ana lys is  and  computer  program has been developed f o r   t h e  
p r e d i c t i o n   o f  unsteady l i f t i n g  surface  loadings caused by  motions o f   l e a d i n g  
edge and t r a i l i n g  edge control  surfaces  having  sealed gaps. The f i na l   f o rm 
o f , t h e  downwash in tegra l   equat ion has  been formulated  by  isolat ing  the  singu- 
la r i t ies   f rom  the   non-s ingu la r  terms and using a preferred  solut ion  process 
t o  remove and evaluate  the downwash d i s c o n t i n u i t i e s   i n  a systematic manner. 
Comparisons o f   t h e o r e t i c a l  and experimental  pressure  data  are made fo r   severa l  
control   surface  conf igurat ions.  The comparisons ind icate  that   reasonably  
accurate  theoret ica l   pressure  d is t r ibut ions and generalized  forces may  be ob- 
t a i n e d   f o r  a w ide   var ie ty   o f   con t ro l   sur face   con f igura t ions .  

INTRODUCTION 

H i s t o r i c a l l y ,  much e f f o r t  has been expended to  adapt  convent ional   osci l -  
l a t i ng   l i f t i ng -su r face   so lu t i on   t echn iques   t o  wings with  control   surfaces. 
Extensive use has been made o f   the   reverse   f low theorem (reference 1) t o  con- 
s t r u c t  an ana ly t i ca l  upwash f u n c t i o n   t h a t   i s  used i n  reverse  f low  to   produce 
"equivalent"  general ized  forces. The generated upwash func t i on   i s   ob ta ined  
by  the  expedient  of  smoothing  over, i n  one way or  another,  the  slope  discon- 
t i n u i t i e s  and corresponding  s ingular i t ies  wi th in  the  pressure  funct ions.  The 
"equivalent" upwash func t ion  does no t  match the  control  surface  slope  accur- 
a t e l y   a t  a1 1 points ,   but  does produce  reasonable  " indirect"  general  ized  forces. 
The usefulness  of t h i s  method de ter io ra tes  when the   "d i rec t "  hinge-moment term 
i s   t o  be  determined. 



The work o f  reference 2 i s  one of  the few subsonic methods developed 
t o  determine  the  'd i rect '   surface  loadings  using  pressure terms tha t   a re  
capable o f   co r rec t l y   rep resen t ing   t he  known s ingu la r i t y   func t ions  around 
the  boundaries o f   the   con t ro l   sur face .  However, i t  was found tha t   so lu -  
t ions  obtained  f rom  the method o f   re fe rence 2.were h igh l y   sens i t i ve   t o   t he  
r e l a t i v e   l o c a t i o n  and number o f   c o n t r o l   p o i n t   c o l l o c a t i o n   s t a t i o n s  used i n  
the  analysis.  The s e n s i t i v i t y  may be a t t r i b u t e d   t o   t h e   p a r t i c u l a r   s o l u t i o n  
process  being  appl ied  that assumes that   d iscont inuous downwash d i s t r i b u t i o n s  
may be approximated  by a l inear  combination  of  polynomial  represented down- 
wash sheets t h a t   s a t i s f y   t h e  boundary cond i t i ons   a t  a se lec t   se t  of cont ro l  
points. .  Changing the   con t ro l   po in t   loca t ions  by re la t i ve l y   sma l l  amounts 
r e s u l t s   i n   l a r g e  changes i n  the  unsteady  loadings.consequently,  the method 
r e q u i r e s   c a l c u l a t i o n   o f  downwashes a t  many s ta t ions  and seeking  solut ions 
i n  a least-squares-error  senser 

S o l u t i o n   s e n s i t i v i t y  remained u n t i l   p r e s s u r e   d i s t r i b u t i o n s  were de- 
veloped  (reference 3) t h a t   i d e n t i f y   t h e   f u n c t i o n a l   d i s t r i b u t i o n  and singu- 
l a r i t y   s t r e n g t h s   r e q u i r e d   t o  produce identical  mathematical downwash d i s -  
con t inu i t i es   con ta ined   i n   t he   k inemat i c   d i s t r i bu t i on .  A prefewed  so lu-  
t i o n  process was developed  by  subtracting  the  discontinuous  mathematical 
downwash d is t r ibu t ion   f rom  the   d iscont inuous   k inemat ic   d is t r ibu t ion   re -  
s u l t i n g   i n  smooth downwash d i s t r i b u t i o n   f o r  which  standard  l i f t ing-surface 
so lut ions  could be appl ied,  The resul t ing  loadings  would  then be r e l a t i v e l y  

i n s e n s i t i v e   t o  .the locat ions and number o f   c o n t r o l   p o i n t s  used i n  the 
analysis.  

The present work represents an extension of t he   ana ly t i ca l  methods 
suggested i n  reference 3 to   p rov ide  a c a p a b i l i t y   o f   n u m e r i c a l l y   p r e d i c t i n g  
the-uosteady  loadings caused  by control   surface  mot ions  that  i s   r e l a t i v e l y  
i n s e n s i t i v e   t o   l o c a t i o n s  of co l l oca t i on   s ta t i ons  on the  surface. Documen- 
t a t i o n  of the computer  program  design, usage, and l i m i t a t i o n s   i s   p r o v i d e d  

i n  reference 4. 
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SYMBOLS 

‘nnm 
b [length] 

bo nength] 

C 

c^ 

k 

k 

M 

M 

N 

n 

P1 [Force/area] 

Pu [Force/area] 

AP [Force/area] 

- 

- 
- 
- 

All quantit ies  are  dimensionless  except as indicated. 

Unknown c o e f f i c i e n t   o f  assumed pressure modes, equation 69 

Local semi chord 

Reference length  

Local  chord  length nondimensional w i th   respec t   t o  bo 

Variable used i n  spanwise pressure  modif icat ion  function, 

equation 49 

Spanwise pressure  d i f ference  d is t r ibut ion,   equat ions 56 

and 69 

Chordwise pressure  d i f ference  d is t r ibut ion,   equat ions 56 

and 65 

Mode shape o f  mode j (see  equation 5 f o r  dimensions) 

fi 
Kernel  function,  equation 6 

Reduced frequency = 

Index  variable,  equation 73 

WbO 

Mach number 

Number o f  downwash s ta t ions  on  a  downwash chord 

Number o f  downwash chords on semispan 

Index  variable,  equation 69 

Pressure on lower  surface 

Pressure on upper  surface 

Pressure  difference, P,-Pu (pos i t i ve  upward) 
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Apj [(Force/area)/unit q .] Surface pressure  difference in mode j J 

qj 

Qij 

Qf j 

R 

S 

S 

[length) 

V [lengthltime) 

V 
w 

j 

w - 

- 
W 

XYYYZ 

X - 

Xt 

xO 

x as 

ii 

X 

General  ized cooGdinate amp1 i tude  for  mode j 

Generalized forces  (see  equation 77 for dimensions) 
I 

Sectional generalized forces  (see  equation 76 for 

dimensions) 

Semi span 

Nondimensional semispan, S/bo 

Free stream vel oc i ty 

Kinematic angle  of  attack  or nondimensional normalwash 
W v .. 

wj/qje 

Coordinates nondimensional with  respect  to bo 

Local chordwise  coordinate ( x  - xm)/(b/bo) 

Nondimensi  onal coordinate of the mi d-chord 1 i ne 

Nondimensional coordinate o f  the leading edge 

Nondimensional coordinate of the trailing.edge 

x -  5 

Streamwise  coordinate of hingeline  at  side  edge of 

i ut 

control surface 

Streamwise  coordinate of planform  leading  edge at side 

edge of control surface 

Local coordinate  for full chord control surface, 

equation 46 

Local coordinate  for  trailing  edge control surface, 
equation 42 
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Y-rl 

YS 

zS 

B 

Bh 

Ac P 

[radian] 

A, [radian] 

X 

P [mass/length3] 

t [ti me] 

0  time] 
0 

4 

Spanwise coordinate of control  surface side edge 

Surface  deflection  (see  equation 4 for  dimensions) 

iiz 

J B ~  + tan2 A, 

Non-dimensional pressure  difference between lower and 

upper surfaces ( P a  - P u ) / (  % p v 2 )  

Sweep angle of the  control  surface  hingeline,  positive 

swept back 

Sweep angle of leading  edge,  positive swept back  on r i g h t  

h m d  side 

Hingeline  coordinate a t  span s ta t ion rl 

Dumny variables  for (x ,y ,z )  

Rotation  angle of  control  surface  hingeline a t  (.TI), 

measured i n  the  plane  perpendicular  to  the  y-axis and 

positive t r a i l i n g  edge up 

Mu1 t ipl icat ion symbol 

Density of  the f l u i d  

Ti me 

Circular frequency  of osci l la t ion 

Chordwise angular  coordinate,  equation 69 

Spanwise angular  coordinate,  equation 69 

I 
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ANALYTICAL  FORMULATION 

The Integral Equation and I ts  Elements 

This report  describes  the procedures used i n  calculating generalized 
aerodynamic forces  existing on a l i f t i n g  surface caused by motions of leading 
edge or trailing edge control  surfaces i n  subsonic flow. The analysis i s  
applicable to  planform configurations having fu l l  span or multiple partial 
span control  surfaces  located anywhere along the  leading or t r a i l i n g  edge o f  
the planform. 

The analysis  coordinate system i s  defined i n  figure 1 for a typical 
t r a i l i ng  edge and/or leading edge control  surface  configuration: 

. Figure 1 - Coordinate System Definitlon 
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$, Solut ions  are  obtained  by  evaluat ing  the downwash-pressure i n teg ra l  
ii equat ion  that  has been der ived from the  l inear ized  potent ia l   equat ion (1). 
$ 

2 
v2+(x*y,z,t) - - 4~x*Y,z, t )  - 0 

The downwash-pressure in tegra l   equat ion  der ived i n  reference 5 provides 
I 
I the  bas is   for   the  analy t ica l   formulat ions used i n  developing  numerical methods 
I f o r  p red ic t i ng  unsteady  loadings on l i f t i n g  surfaces. 

The general  form of   the  in tegra l   equat ion  der ived  in   re ference 5 and 
used throughout  th is  d iscussion i s  given by the  expression 

where 
3 represents  the  kinematic downwash caused  by  motions o f  the l i f t i n g  

V surface 

A P ( ~ , ~ )  represents  the  pressure  dif ference between the upper  and lower 
surface and i s  the  on ly  unknown i n  the  equation 

K(x,c,y,rl) represents  the  kernel   funct ion  that   def ines  the normalwash 
a t  x,y  due t o  a pulsat ing  pressure  doublet   at  C 9 0 ,  

Solut ions  of   the  integral   equat ion  are  obtained by  assuming that   the 
l i f t i n g   s u r f a c e   d e f l e c t i o n  shape,Zs , may be represented  by a f i n i t e  sum o f  
d i sc re te  mode shapes t h a t   a r e   d e f l e c t i n g   i n  a sinusoidal manner. That i s ,  
the   de f lec t ion  shape i s  assumed t o  be represented  by 

where Zs has dimensions o f   l e n g t h  and i s  a funct ion  o f   t ime.  

H.(x,y) i s   t h e   d e f l e c t i o n  shape o f  the j-th mode 
J 

9 j   i s  the  general ized  coordinate  def in ing how  much o f   t h e  jfi mode i s  
contained i n  Zs, 
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The dimension o f   t he   p roduc t  Hj(x,y)qj i s  i n  uni ts  of   length.   That  is ,  

i f  H (x,y) has a dimension o f   l eng th ,   t hen   q j   i s  non-dimensional, or if 
H.(x,y) i s  non-dimensional,  then  qj has un i ts   o f   leng th .  

J 
3 

The kinematic downwash term o f  equation (2)  i s  developed  from  the  surface 

mot ion   de f in i t ion  and i s  given as 

The to ta l   pressure  d i f ference between  upper  and lower  surfaces i s   a l s o  

dependent upon the modal displacement and i s  given as 

The f i n a l  form o f   t h e  downwash in tegra l   equat ion   i s   ob ta ined by 
insert ing  the  expressions  for  the  kinematic downwash  and pressure  d i f ference 
in to  equat ion (2)  and removing  the qjeiot term from both  sides o f  the 
equat ion  that   resul ts   in   the  express ion 
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I/ The p ressu re   d i s t r i bu t i on  A P ~ ( E , U )  i s  the  on ly  unknown func t i on   w i th in  
the  in tegra l   equat ion and i t s   d i m e n s i o n a l i t y   i s   e s t a b l i s h e d  by no t i ng   t ha t  

t he   p roduc t   o f  K(x,S,y,n) d(bo,E)dtban) i s  non-dimensional and (1 /4 rp~2)  has 

dimensional  units o f  ( l /(Force/area) ) which  requires  that  the  dimensions  of 

APj(c ,n)  i s  equal t o   t he   p roduc t  o f  (Force/Area)  times  the  dimensions  of  the 

kinematic downwash term. 

That  is ,  i f  H.(x,y) i s  dimensional,  then  the  kinematic downwash i s  non- 
J 

dimensional  and r e s u l t s   i n   h a v i n g  A P ~ ( E , ~ )  take on  dimensions  of  (Force/Area). 
However, i f  Hj(x,y) i s  non-dimensional,  then  the  kinematic downwash has 
dimensions o f   ( l / l e n g t h )  which  resul ts i n  having  dimensions o f  A P j ( € , n )  
def  i ned as ( Force/Area) /1 ength . 

The subscr ip t  (j) i s   omi t ted   in   the   remain ing   sec t ions ,  up to   t he  
sect ion on general ized  forces,  with  the  understanding  that  the  pressure  terms 
being  determined  are  those  terms  necessary t o   s a t i s f y   t h e  j;th mode shape 
boundary condi t ions.  

The K(x-<,y-q,M,k) term of  equat ion (2 )  represents  the  kernel  function 
of   the  in tegra l   equat ion  that   descr ibes  the  sur face normalwash a t  (x,y) due 
t o  a pulsat ing  pressure  doublet   located a t  (<,T-I). The kernel   funct ion i s  
def ined as 

Reduction o f   equat ion  (6) i n t o  a  form easi ly  evaluated by rou t i ne  
numerical  procedures has  been accomplished  by  Watkins, Runyan,  and Woolston 
(reference 6) and presented i n  non-dimensional form by consider ing  the  var i -  
ab1 e as being  referenced  to some chosen length  (bo) and in t roducing  the 
reduced  frequency  parameter k = b&V the  funct ion becomes 
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h 
- i l [ r / ( l + r 2 ) ’ ]  exp  (iklyo1‘c)  dr] 

0 J 

where 
h = [xO-M(xO2+B2yo2 1’1 /B2Yo 

S ingu la r i t ies   con ta ined  in   equat ion  ( 7 )  have been i d e n t i f i e d  and are 

i s o l a t e d   i n   t h e   f o l l o w i n g  form 

where Kns(x,C,y,n) i s  the  non-singular  part  of the  kernel  function. 

The s i n g u l a r   p a r t   i s   i d e n t i f i e d  as 

This  expression  contains  the  dipole,  inverse  square  root, and logar i thmic 
s i n g u l a r i t i e s   i d e n t i f i e d   i n   r e f e r e n c e  (6) .  The l a s t  term of   equat ion (9) i s  
not   s ingular .  However, i t  i s  included  since  special means are  required i n  

10 



i evaluat ing  the downwashes i n  regions  near  the downwash chord  that   are produced 

b y   t h i s  term. 

I n s e r t i o n   o f   t h e  above d e f i n i t i o n s   i n t o   t h e  downwash integral   equat ion 
resu l t s  i n  the  fo l lowing  express ion  that   is   to   be  evaluated  over   the  sur face 
t o   s a t i s f y   t h e  boundary  condtions. 

The f i r s t   i n t e g r a l   r e p r e s e n t s   t h e   c o n t r i b u t i o n   t o   t h e  downwash a t  (x,y) 
due to   the  non-s ingular   par t   o f   the  kernel   funct ion.  The general shape of 
K,,s(x,~,y,q) i s   u s u a l l y   q u i t e  smooth fo r   l ow  Mach numbers and i s  due t o   t h e  
s t rong  s inuso ida l   charac ter is t i c   o f  e -jk% i n  the  expression. However, the  I 

chordwise  characterist ics change q u i t e   r a p i d l y   f o r  Mach numbers greatei*.,than I 

M = 0.85 as i s  demonstrated i n   f i g u r e  2 that  represents  the  chordwise  variat ion 
i n   t h e  imaginary  par t   o f  KnS(x,6,y,q) w i t h  Mach number.  The (x-6)  coordi- 
na te   o f   f i gu re  2 represents  the  chordwise  difference between the  pulse  sending 
po in t   l oca ted   a t  (6,q) and the downwash stat ion  (x,y) .  
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Since   t he   f unc t i ona l   d i s t r i bu t i ons   o f  Kns a re   qu i te   d i f f e ren t   f o rward  

and a f t   o f   t h e  downwash s ta t ion   the   chordwise   in tegra t ion   in te rva l  is sub- 
d i v i d e d   i n t o  two i n t e r v a l s   x a s c x  and x g y c t   t o   p r o v i d e  an accurate 
evaluat ion  o f   the  chordwise  in tegra l .  

M = 0.80 

I 

-2. 
- -  - 

-1.2 - .4  0 .4 1.2 7 

Figure 2 - Chordwise V a r i a t i o n   o f  Kns ( I )  as a Function o f  
Mach  Number f o r  y-q=0.05, k=0.7854 

The second, th i rd ,  and four th   in tegra ls   o f   equat ions  represent   the 
downwash cont r ibu t ions  due to  the  d ipole,   inverse  square  root,  and 
loga r i t hm ic   s ingu la r i t y  terms respect ive ly .  The l a s t   i n t e g r a l  does no t  
conta in  a s i n g u l a r i t y   i n   t h e  spanwise d i rec t ion ,  however, special  procedures 
a re   requ i red   t o   eva lua te   i t s  downwash contr ibut ion  s ince a f i n i t e  
d i s c o n t i n u i t y   e x i s t   f o r  values  of q+y. 
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Evaluat ion o f  the  Dipo le Term 

The  downwash con t r i bu t i on  due to   the   d ipo le   te rm  i s   eva lua ted   us ing   the  
method suggested  by Hsu (reference 7) .  The d ipo le   i n teg ra l  o f  equation  (10) 
i s  given as 

-s XR 

The  downwash con t r i bu t i on  due t o  the  d ipole  term  is  determined by 
consider ing  the normalwash a t  a p o i n t  ( x , y , ~ )  t h a t   i s   l o c a t e d   j u s t  o f f  
the  surface shown i n   f i g u r e  3.  

Z 

Figure 3 -Coordinate System Used i n   t h e  Kernel  Function  Derivation 

The kernel   funct ion  descr ib ing  the normalwash a t  (x,Y,E) due t o  a 
pressure  pu lse  a t  (S,n,O) i s  given by 

13 

I 



h 

The dipole  portion of the  kernel i s  

-i kx 
K ~ P  = + e (l+xo/R) (-1 + 2 sin2$) 

Using the  geometric  properties of figure 3 that   define 

r2 = r 2 t E 2 ;  ro = yo = y-n;  sin J, = t;, E R = (xo2+B2r02)4 

The dipole  portion  then  takes on the  definition 

0 

-i kxo ( rO2-E2) 

( ro 2 + ~ 2 )  

K ~ P  = - e ~- ( l + X O / R 0 + O ~ € 2 ) )  

where the terms represented by O( €'))-to as e 4. 

The normalwash a t  (x,y,O) i s  obtained by a limiting  process  allowing 
e 4 after  the normalwash integral has been evaluated  as  indicated by the 
following: 

Following the development of reference 7,  l e t   G ( x , y , ~ )  be the chord- 
wise integral 

14 



and as v y  t h i s   i n t e g r a l  becomes 

One o f  the  s ingular i t ies   is   then  subt racted  f rom  equat ion  (14)   that  
r e s u l t s  i n  the  expression 

The f i n i t e   p a r t  o f  the second in teg ra l  i s  

The f i r s t   i n t e g r a l   i n  equation  (16) i s   a l s o   s i n g u l a r .  However, i t  may 
be evaluated  using Cauchy integrals  provided  that   the  term 

rG(x,Y ,d - G(X,Y ,Y ) l  
Y - r l  

ex i s t s  i n  the limit as rpy and takes on a d e f i n i t i o n   o f   t h e   f i r s t   d e r i v a t i v e  
o f  G(x,y,q) w i t h   r e s p e c t   t o  17. 

15 
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The need o f   app ly ing  Cauchy integral  procedures  to  equation  (16) may be 
circumvented  by  subtracting an add i t i ona l   s ingu la r i t y .  

Def i n i  ng 

and l e t  

then 

The second i n t e g r a l   l i m i t s   o u t   t o   z e r o  as E+O and equation  (18)  takes 
on the  in tegra l   form  of  



[ p 
I However, the second d e r i v a t i  ve  does no t   ex i s t   s i nce   t he   i n teg rand   i s   s ingu la r  

a t   t h e  downwash chord T-I = y. An example o f   t h i s   s i n g u l a r   c h a r a c t e r i s t i c  when 
n+y i s  shown i n   f i g u r e  4 which  represents a p l o t   o f   t h e  spanwise integrand 
o f  equation  (19)  appl ied  to  the  analysis  planform shown i n  the  sketch. 

10. 

-1:o -0I5 

-10. 

-20. 

Figure 4 - Spanwise Var ia t ion   o f   the   In tegrand  o f   Equat ion  (19) 
Disp lay ing   the   S ingu la r i t y   a t   the  Downwash Chord. 

I n   t he   f o l l ow ing   sec t i on ,   t he   s ingu la r i t y   j us t   desc r ibed  i s  i d e n t i f i e d  as 
being  logar i thmic i n   i t s  character and numerical  evaluation  of  equation  (19) 
will be accomplished  using  logarithmic  quadrature  integration  functions.  Also, 
the  fo l lowing  sect ion  conta ins a descr ip t ion  o f  how the spanwise integrand may 
be modi f ied   to   p rov ide  a non -s ingu la r   d i s t r i bu t i on   t ha t  may be read i l y  
evaluated by Legendre-Gauss integrat ion  quadrature  funct ions.  

17 



IDENTIFICATION OF SPANWISE SINGULARITIES 

The spanwise s ingu la r i t y   con ta ined  w i th in   the   in tegrand  o f   the   d ipo le  
downwash term was f i  r s t   i d e n t i f i e d  by Mu1 thopp  (reference 8 )  i n  the  develop- 
ment o f   t he   s teady   s ta te   l i f t i ng   su r face   so lu t i on .  The technique  developed 
by  Multhopp has been extended  by  Laschka  (reference 9 )  t o  make i t  appl icable 
f o r  use i n  non-steady l i f t i n g   s u r f a c e   s o l u t i o n s .  

The funct ional   express ion  o f   the  addi t ional   s ingular i ty   conta ined  wi th in  
the  d ipo le downwash term may be obtained  by  developing a Taylor  ser ies ex- 
pansion o f  AP(~,T-I) -i kxo about  the downwash s t a t i o n  and performing  the 
r e s u l t i n g  chordwise  integration.  That  is, l e t  AP(c,q)e-ikxO be approximated 
by  spanwise-chordwise  Taylor  series  given  by 

The s i n g u l a r i t y  i n  the spanwise integrand i s   i d e n t i f i e d  by i n s e r t i n g  
equation (20) into  the  d ipole  chordwise  integral   of   equat ion (10) and 
pe r fo rm ing   t he   i nd i ca ted   i n teg ra t i on   t ha t   resu l t s   i n   t he  spanwise i n t e g r a l  

given as 

[[g y02‘nB2y02] + Terms 
Regular d 1T-I 

Thus, t h e   a d d i t i o n a l   s i n g u l a r i t y   i s   i d e n t i f i e d  as being  logar i thmic i n  
character  which i s  amenable t o   i n t e g r a t i o n   b y  use o f   l oga r i t hm ic   i n teg ra t i on  
quadrature  functions. 

18 
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1 The t h i r d  integrals o f  equation  (10)  also  contain a spanwise singularity 
tha t  is proportional t o  &B2 (y-n) 2. The singularity i s  identified by insert- 
ing the Taylor se r ies  expansion of  equation  (20)  into the t h i r d  downwash term 
and performing the chordwise integration  that  results i n  a spanwise integral 
given as  

The fourth  integral of equation (10) has a spanwise singularity  that  may 
be identified by redefining the 1 ogari thmi c par t  of the kernel  function t o  have 
the following form for  <<x 

Insertion of t h i s  expression  into the chordwise integral results i n  the 
equation  for I ( ~ )  of  

Once the s ingular i t ies  have  been identified they may be subtracted  out 
of  the  integrand and analytically  evaluated outside of the integral. 

Figure 5 shows the very smooth spanwise distributions of the integrand 
I(y,q)  obtained  for the dipole term by subtracting  out the identifiable 
s ingular i t ies  of  equation (21) .  Removal of the  singularities  allows  the use 
of  Legendre-Gauss quadrature  formulas t o  evaluate the spanwise integral using 
only a very small number o f  quadrature  stations. As i n  any singularity sub-  
traction  process,  local i  zed gradients may appear tha t  may require additional 
subdivision  of the integration  interval  to  accurately  evaluate the integral. 
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I-t should be noted tha t  there is a slope  discontinuity  yet   existing  at  
the downwash s ta t ion and this may be smoothed by subtracting  additional terms 
o f  the  Taylor  series  expansion. 

I .  I 
0 -0.5 

-1 0 

X 

Figure 5 - Spanwise Var ia t ion  of Integrand o f  Equation (19)  w i t h  Singularit ies 
o f  Equation (12)  Removed from the  Integrand 

As a consequence o f  the above there  are  several  options open to  the 
analyst i n  evaluating  the spanwise portions o f  the downwash integral and 
are: 

( 1 )  ignore  the  logarithmic  singularity  since i t  is o f  relatively low 
order, 

( 2 )  subtract  the  singularities o u t  o f  the  expression and analytically 
evaluate  their downwash contribution, and 

(3)  apply  numerical integration  quadrature  functions  that can evaluate 
the  logarithmic term a t  the downwash chord. 

20 



1 ' j $j Numerical investigations have been performed to  determi ne the v a l i d i t y  
~ i n  using any  one of the three  integration  options w i t h i n  the  control  surface 

program. The analysis planform shown i n  figure 6 i s  a rectangular wing having 
a fu l l  span flap  deflected i n  steady flow. The deflection shape and step 
function downwash distribution  are  also  displayed  to show the  discontinuity 
tha t  must be matched by the mathematical downwash calculation of  the  integral 
equation. The  assumed pressure  distribution used i n  the  analysis i s  composed 
of a chordwise singularity term &z( 6- xc) and other modifying terms required 
to   sat isfy  the boundary conditions a1  ong the planform  edges. 

Rectangular  Planform  with  Full  Span Flap 

'-1 Def 1 ect   ion Shape 

mmrt Downwash D i s t r i b u t i o n  

Figure 6 -Analysis Planform Used to  Evaluate  Effect o f  
Spanwise Singularit ies on  Downwash Distribution 

Results of applying  option (1 ) to  evaluate  the spanwise integral o f  
equation (19) are  shown i n  f igure 7. The integral i s  evaluated  using  the 
interdigiting  process  suggested i n  reference 7 where a single Gauss-Mehler 
quadrature  function i s  applied  over  the  complete span of the planform. The 
stngularity a t  the downwash chord i s  not  recognized by this integration 
procedure and consequently  the  resulting chordwise downwash distribution is 
smooth  and continuous  across  the  hingeline. I t  appears that  l i f t i n g  surface 
solutions  obtained using option (1) will not  provide a satisfactory mathe- 
matical  representation  of the boundary conditions  for  physical wing-control 
surface combination. 
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Cal cul  ated 
Normalwash 

X/C - chordwi se  coordinate 

Figure 7 - Chordwise Downwash Distribution  at  Mid-Span S t a t i o n  Resulting from 
Applying Option ( 1  ) (logarithmic  singularity  ignored) 

Figure 8 presents  the  results u s i n g  the second o p t i o n  where the 
s ingular i ty   is   t reated by approximating the  pressure terms by a Taylor 
ser ies  expansion and  removing the  singularity from the spanwise integrand. 
Equation (19) has  been modified by subtracting  the  singularities  (identi- 
fied i n  equation (21 )  ) and evaluating  their   effect   outside o f  the  integral. 

Cal cul a ted 
Normal  wash 

LIE, : 

HL 

4 
Figure 8 - Chordwise Downwash Distribution Resulting from Applying Option ( 2 )  

(logarithmic  singularity  is  subtracted and evaluated  separately) 
22 



'I 
i I f rom  the  hingel ine; however, the downwash  becomes s ingu la r   a t   the   h inge l ine .  

This i s   t o  be  expected  since  the  pressure  term used i n  the  analys is   to   prov ide 
the  step  funct ion change i n  boundary condit ions  across  the  hingel ine i s  pro- 
port ional   to  togl&-xcl   which  cannot be  approximated  by a Taylor  ser ies i n  the 
v i c i n i t y   o f   t h e   s i n g u l a r i t y   a t  &=xc. 

The  downwash d i s t r i b u t i o n  shown i n   f i g u r e  8 ind icates  that   the downwash 
c o l l o c a t i o n   s t a t i o n s   a r e   t o  be r e s t r i c t e d   t o  chordwise  locations  that  are 
spaced w e l l  away from  hingel ine where la rge  downwash gradients  are developed. 
T h i s   r e s t r i c t i o n  may n o t  be s a t i s f i e d   f o r  analyses o f  wings  having  small  per- 
cent  chord  control  surfaces. 

T h i s   r e s t r i c t i o n  may be removed by  apply ing  opt ion (3)  where the  spanwise 
i n t e g r a l   i s   e v a l u a t e d  by subd iv id ing   the   in tegra t ion   in te rva l ,  - s j n ~ s ,  i n t o  
several   subintervals and applying  quadrature  formulas  appropriate  to  the 
func t iona l   charac ter is t i cs   o f   the   in tegrand.  

Resu l ts   o f   app ly ing   op t ion  (3) to   evaluate  equat ion (19) are shown i n  
f i g u r e  9 .  The i n t e g r a t i o n   i n t e r v a l  has been divided  into  subregions and 
appropriate  quadrature  formulas have  been appl ied i n  the  subregions, i.e., 
square root  quadrature  formulas  applied a t  ends o f   t he   i n te rva l ,   l oga r i t hm ic  
quadrature  formulas used on e i ther   s ide  of the downwash s ta t ion ,  and Legendre 
quadratures  appl ied  wi th in   the  remain ing  in tegrat ion  in terva ls .  

Calculated 
Normalwash 

I 

LIE, r T,E, c C r  t" 

Figure 9. Chordwise Downwash Dis t r ibut ion  Resul t ing  f rom  Apply ing  Opt ion (3) 
( logar i thmic  s ingular i ty  evaluated  by  appropr iate  quadrature 
formulas) 
.\ 
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The r e s u l t i n g  downwash d i s t r i b u t i o n   ( f i g u r e  9 )  does conta in   the  s tep 

funct ion change across  the  hingeline  necessary t o  sa t i s f y   t he  boundary  condi- 
t i ons  and  does n o t   e x h i b i t  any large  gradients   near   the  h ingel ine  that  may 
cause s o l u t i o n   s e n s i t i v i t i e s   f o r   a n a l y s i s   o f  small  chord  control  surfaces. 

Addi t ional   numer ica l   invest igat ions  o f   ca lcu lated downwash d i s t r i b u t i o n s  
have  been accomplished to   iden t i f y   the   spec i f i c   in tegra t ion   techn ique  tha t  
wou ld   p rov ide   t he   l eas t   e r ro r   i n   ca l cu la ted  downwash values fo r   s ta t ions   near  
the  leading  edge-where  large  pressure  gradients appear i n   t h e   s o l u t i o n  process. 
An assumed pressure  funct ion  that  i s  inverse ly   propor t ional  t o  the  square r o o t  
of   the  d istance  f rom  the  leading edge was app l i ed   t o  a rectangular  planform 
having an aspect r a t i o  o f  s ix .   F igure 10 represents  the  steady  state  chord- 
wise downwash d is t r ibu t ions   ob ta ined  a t   the   mid  semispan s ta t ion   us ing   op t ion  
2 and opt ion 3.  The d i s t r i b u t i o n s  appear t o  be s im i la r   f o r   s ta t i ons   l oca ted  
at   large  distances  f rom  the  leading edge, however, the  opt ion 2 d i s t r i b u t i o n  

74.  - 
W v 

I 
1 2 .  

I I I I I I 1 l a  
0 0.2 0 . 4  0.6 0 . 8  1 . 0  

X/C (CHURDWZSE COURDINATE) 

Figure 10 - Chordwise Downwash D is t r i bu t i on   f o r   I nve rse  Square  Root  Pressure 
Function  Resulting  from  Applying  Option 2 and Option 3. 
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(where the   l oga r i t hm ic   s ingu la r i t y   i s   sub t rac ted   f rom  the   i n teg rand  and 
eval  uated  separately) i s  t end ing   t o  become qingul   ar   near  the ,1 eadimg edge. 
Agai n, t h i s  tendency fo r   t he   ca l cu la ted  downwashes t o  become s i ngu l   a r  i s  
expected  since  the  Taylor  series  expansion  of  the  inverse  square  root does 
n o t   e x i s t   a t   t h e   l e a d i n g  edge.  The d i s t r i bu t i on   ob ta ined  by apply ing 
appropriate  quadrature  formulas  to  the spanwise integrand  (opt ion 3) appears 
t o  be  continuous f o r   a l l   r e g i o n s   i n c l u d i n g   s t a t i o n s  near  the  leading edge. 

Consequently, i t  appears t h a t   a p p l i c a t i o n   o f   o p t i o n  3 will provide 
so lu t i ons   t ha t  will not  be s e n s i t i v e   t o   t h e   r e l a t i v e   l o c a t i o n   o f  downwash 
co l l oca t i on   s ta t i ons   f o r   ana lys i s  o f  either  smal l   percent  chord  control  
sur face   con f igura t ions   o r   fo r   ana lys is   o f   s tandard   l i f t ing   sur face  
conf igurat ions.  

The above numerical   invest igat ions have  been accomplished f o r   t h e  
steady  f low  condi t ion by evaluating  equation  (19)  having  the  reduced 
frequency, k,  set  equal  to  zero. The fo l lowing  sect ion  estab l ishes  the 
numerical methods  used to   evaluate  the downwashes fo r   s inuso ida l  unsteady 
motion. 

Eva lua t i on   o f   t he  Unsteady Downwash In tegra l  

The  downwash i n t e g r a l   f o r  unsteady  motion i s  evaluated  using a 
modif icat ion  of  the  procedure  suggested by Hsu (reference 7)  where  two 
s ingu la r i t ies   a re   sub t rac ted  and evaluated  outside  of   the  integral .  The 
procedure  previously  described  to  evaluate  the downwash due t o  the   d ipo le  
term i s  modif ied  by  changing  the  definit ion  of H(x,y,n) o f   equat ion  (17)  
t o  become 

such t h a t  
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Then equation (19) may be w r i t t e n   i n   t h e   r e v i s e d   f o r m  o f  

and t h i s  i s  re turned  to   another   form  us ing  the  def in i t ions  o f  AP(C,q)  and 

the  d ipo l  e kerne l   tha t   resu l   t s  i n 

where P ( 5 , q )  = AP(C,q)/(s2-n2)* 



The downwashes  due to   the  non-s ingular   par t   o f   the  kernel   funct ion  are 
evaluated  using Gauss-Legendre integrat ion  quadrature  funct ions.  The f i n a l  
form  used to   eva lua te   the  downwash i n t e g r a l  i s  given as fo l lows: 

+ TT G(x,y,y) + T y G ' ( x , y , r ~ ) l ~ , ~  

(28) 
where 

f (n)  i s  the spanwise assumed pressure   d is t r ibu t ion   d iv ided 
by (s2-n2)'. 

g(5,q) i s  the assumed chordwise  pressure  d istr ibut ion.  

Cs(y,n) represents  the  chordwise  integral due t o  the   s ingu la r   par t  
o f   the   kerne l   func t ion  



Cns (y,d represents  the  chordwise  integral due to   the  non-s i   ngular  
pa r t   o f   t he   ke rne l   f unc t i on  

Y 
A 

The chordwise  integrals  of   equat ions  (29) , (30), and (31 ) are  numerical ly 
evaluated  by  subdiv id ing  the  in tegrat ion  in terva l   in to   smal l   reg ions and apply- 
ing  in tegrat ion  quadrature  formulas  appropr ia te  to   the  funct ional   character-  
i s t i c s   o f   t h e   i n t e g r a n d .  The spanwise in tegra t ion   in te rva l   o f   equat ion   (28)  
i s   a l so   subd iv ided   i n to   sma l l   i n teg ra t i on   i n te rva l s   t ha t   i nc ludes  an i n t e r v a l  
around  the downwash chord where logar i thmic  integrat ion  quadrature  formulas 
are  appl ied t o  evaluate  the spanwise s ingu la r i t y   p rev ious l y   i den t i f i ed .  

Eva lua t i on   o f   t he  spanwise der iva t ive   de f ined by equation  (32) may be 
accompl ished  fo l low ing   the   ru le   fo r   d i f fe ren t ia t ing  a d e f i n i t e   i n t e g r a l  
providing  the  integrand g.( 6,n)  does no t   con ta in  terms tha t   a re   s ingu la r .  
Special  procedures  are  developed to  evaluate  equation  (32)  for  the case of 
having  pressure  functions  that have an inverse   square   roo t   s ingu la r i t y   a t  
the 1 eading edge or   hav ing a l o g a r i t h m i c   s i n g u l a r i t y   a t   t h e   h i   n g e l   i n e  and 
are  g iven as fo l lows.  



The chordwise integral   for the case of having a pressure  function  that 
has an inverse  square  root  singularity a t  a swept leading edge i s  given  by 

I t  i s  required to  eval uate ''1 17=y and may be accomplished by forming a 
Taylor  series expansion o f  t he   l a s t  term of the integrand  about r)=y; tha t  
i s  

and apply a transformation  to  reduce the integrand  to an easily  integrated 
form by le t t ing  

then 

The las t   in tegra l  of the above expression will not  contribute  to the 
derivative  value when evaluated a t  q=y and may be neglected i n  the 
derivative  calculation. 
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F o l l o w i n g   t h e   r u l e   f o r   d i f f e r e n t i a t i n g  a d e f i n i t e   i n t e g r a l  and applying 

the   cha in   ru le  

and no t i ng   t ha t  

where 
6(z) i s   t he   D i rac   de l ta   f unc t i on .  

then  the  expression  for  the spanwise d e r i v a t i v e  becomes upon applying  the 

inverse  tranSform 
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A simi lar   expression may be ob ta ined  fo r  a chordwise  integral   that  
contains a l oga r i t hm ic   s ingu la r i t y  such as 

where  xc i s  a h i n g e l i n e   t h a t   l i e s   w i t h i n   t h e   i n t e g r a t i o n   i n t e r v a l .  

The in teg ra t i on   i n te rva l  

= lim 
€-to 

XR 

i s  d i v i d e d   i n t o  two par ts  

[ rE+ jt XC+€ ] 
and the same procedures  are  appl ied  resul t ing i n  the  expression  for  the 
spanwise der iva t ive   g iven  as 

X 
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Thus,  the spanwise derivative  of  equation (32) may be evaluated  for func- 
t ions  that  have singular  or  non-singular  characteristics and the downwash i n -  
tegral  of  equation (28) may be evaluated us ing  integration  quadrature  functions 
that  are  appropriate  to  the  functional  characteristics of the integrand.  

L i f t i n g  surface downwash distributions may be generated by evaluating equa- 
tion (28) for  any pressure  expression  that may be e i the r  continuous  or non- 
continuous  over  the  surface.  Solutions  for  configurations having discontinuous 
downwash distributions  require  application of special  techniques  to minimize 
the  solution  sensitivity. 

Solution  Process  for  Discontinuous Downwash Distributions 

No di rec t  means is available  to  obtain a closed form s o l u t i o n  of the down- 
was-h integral  equation t h a t  sa t i s f ies   the  boundary conditions  exactly everywhere 
on the  surface. Approximate solutions  are used i n  l ieu of an exact  solution 
process. The approximate solution  process is  one of generating a f i n i t e   s e t  of 
downwash sheets and constructing  linear combinations o f  these  sheets  to  satisfy 
the boundary conditions of a f i n i t e   s e t  of pre-selected  control  points on the 
surface. 

The  downwash sheets  are  obtained through an evaluation of the downwash 
integral  using assumed pressure  distributions t h a t  satisfy  the  required  loading 
conditions on the planform edges. The assumption usually made is t h a t  i f  the 
boundary conditions  are  satisfied  at  a suitable number of control  points  dis- 
tributed  over  the  surface, then boundary conditions  over  the  rest of the  sur- 
face will be sa t i s f ied  w i t h i n  small error  limits. 

This approximate  procedure i s  equivalent  to assuming t h a t  the downwash 
sheets may be represented by a ser ies  of polynomials that   are  continuous  over 
the  surface and may be combined to  satisfy  the  surface boundary conditions a t  
arb i trary  control poi n t s  . 
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This  procedure  provides  reasonable  resul ts  for   analyses  of   conf igurat ions 
having  continuous downVa.sh d i s t r i b u t i o n ;  however, it may f a i l   t o  produce  con- 
s i s ten t l y   accu ra te   resu l t s  when appl ied  to   analyses  o f   w ing-contro l   sur face 
conf igurat ions  that  have discontinuous downwash d i s t r i b u t i o n s .  

The solut ion  procedure used for   analys is   o f   cont inuous downwash configura- 
t i ons  has been modif ied such tha t   so lu t ions  may be obtained  for   conf igurat ions 
having  discontinuous downwash d i s t r i b u t i o n s  and i s  described i n  the   mat r ix  

*where 

i s  the  kinematic downwash obtained  from  the  motion 
o f  the l i f t i n g  surface and conta in ing   d iscont inu i -  
t ies   a long  the edges o f  a control   surface. 

/ / b ~ ( c , q ) ~ ~ K ( c , n )  dcdn i s  the  surface downwash d i s t r i b u t i o n   t h a t   i s  
formulated  hav ing  ident ica l   d iscont inu i t ies  a long 
the  control   surface edges as def ined  for   the 
k inemat ic   d is t r ibu t ion .  

i s  the  pressure  d istr ibut ion  developed by  the 
asymptotic  expansion  process  that will provide  the 
required change i n  boundary condit ions  across  the 
control  surface edges def ined by the  kinematic 
d i s t r i b u t i o n .  

j f ipL (~ , , , )  K( Cln)dEdn i s  the  standard 1 i f t i n g   s u r f a c e  downwash d i s t r i b u -  
t i o n   t h a t   i s  smooth and continuous and i s  calcu- 
la ted   us ing  smooth and continuous assumed pressure 
d i s t r i b u t i o n s  A P ~ ( & , ~ )  
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The solut ion process is a two step process. The f i r s t  step i s  t o  calcu- 
"residual downwash distribution by performing the operation L late the 

The residual  distribution  is t o  be  smooth and continuous and i s  used as 
the boundary condition for the  second step, which is the solution of 

The final pressure distribution  is then  the sum of the pressure compon- 
ents, i .e.  

A schematic o f  the solution process i s  presented i n  figure 11 for a con- 
f i g u r a t i o n  h a v i n g  an o s c i l l a t i n g  t r a i l i n g  edge control surface. 

Figure 11. Solution Process for Trailing Edge Control Surfaces 
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The kinematic downwash d i s t r i b u t i o n   i s  developed  from  the  surface  motion  defi- 
n i t i o n  and d isp lays  d iscont inu i t ies  a long  the  boundar ies  o f   the  cont ro l   sur face.  
A downwash d i s t r i b u t i o n   i s   c a l c u l a t e d  havi,ng ident ica l   d iscont inu i ty   va lues 
that  are  contained i n  the   k inemat ic   d is t r ibu t ion  and i s  obtained  by  evaluating 
the downwash in teg ra l   o f   equa t ion  (28) using an asymptotic  pressure  expression 
developed f o r  a swept h i n g e l i n e   t r a i l i n g  edge control  surface. The residual  
d i s t r i b u t i o n   i s   t h e n  formed by  subt ract ing  the  k inemat ic   d is t r ibut ion  f rom  the 
ca l cu la ted   d i s t r i bu t i on .  The r e s i d u a l   d i s t r i b u t i o n  must be smooth and con- 
tinuous and i s  used  as the new boundary cond i t ion   de f in i t ion   fo r   wh ich   so lu -  
t ions  are  obtained  using  standard  l i f t ing  surface  procedures.  

A similar  procedure i s  used to   ob ta in   so lu t ions   fo r   mot ions   o f  a smal l  
chord  leading edge control  surface a s  i s  shown i n   f i g u r e  12.  

OEFLECflON  VEFZN1TIO)I 

DO(rMWASH - URGE CHOW) TRAZLING 

EOGE C O W L  SURFAC 
EDGE CONTROL SURFACE 

Figure 12. Sol u t i o n  Process f o r  Leading Edge Control  Surface 
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Jhe  residual  distribution is formed by adding to  the kinematic d i s t r i b u -  
tion a downwash distribution of a 1a.rge chord t r a i l i ng  edge control  surface 
that  has a hingeline  located a t  the same position  as  the small  chord leading 
edge control  surface and then  subtracting  out  the downwash dis t r ibut ion gener- 
ated  for a full chord control  surface. 

The  key t o  this solution  process is  the development of pressure d i s t r i b u -  
tions having coefficients of known strengths  that  will  provide  identical  values 
of downwash discontinuities t h a t  are  contained i n  the  kinematic downwash dis-  
tr ibution. Formulation of  the  analytical  pressure  distributions  that  provide 
the  required  discontinuities i n  boundary conditions  are  briefly  discussed i n  
the  following  section. 

Pressure  Functions 

Use of the modified solution  process  requires two se ts  of  pressure distri- 
butions  to be defined  over  the l i f t i n g  surface planform. One of the distribu- 
tions i s  to  provide  identical  values of downwash discontinuities  as  defined by 
the  kinematic downwash distribution and the second pressure  function i s  re- 
quired t o  satisfy  the smooth and continuous boundary conditions  defined by the 
residual downwash description. 

Incremental pressure  expressions have been developed by Landahl to  satis- 
fy the change i n  boundary conditions around the edges  of a non-swept hingeline 
t r a i l i ng  edge control  surface  configuration  that has i t s  side edges  inboard  of 
the planform t i p .  

The solution of Landahl was obtained us ing  the  asymptotic  expansion  pro- 
cess. The behavior of the  pressure  functions is  readily  obtained  for  regions 
i n  the immediate vicinity of the  control  surface  leading edge and side edge 
since  the  effect of using  asymptotic  expansions is  to magnify the  singular 
region by stretching  the  coordinates by a small quantity L . 
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The solution  derived by Landahl that  w i  11 exactly  satisfy the required 
change i n  boundary conditions  near  the  corner of a non-swept hingeline 
t r a i l i ng  edge control  surface is  given  as 

where O(n) is  the  rotation  angle of the  control  surface measured i n  a plane 
perpendicular  to  the y axis. 

The expression  contains  the  expected  logarithmic  singularity  along  the 
hingeline and the spanwise loading has slope  singularity a t  the  side edge of 
the  control  surface t h a t  i s  known t o  ex is t   for  l i f t i n g  surface  loadings on 
configurations h a v i n g  discontinuous downwash distributions.  

Pressure  functions have  been formulated by Ashley" for  a swept hinge- 
l i ne   t r a i l i ng  edge control  surface t h a t  extends t o  the t i p  of the planform. 
Application of asymptotic  expansions  along w i t h  use of  Fourier  transforms 
resul ts  i n  the  following f i r s t  order  solution given i n  reference 
expressed i n  integral form as 

10 and 

dq 

where the bar  coordinates  represent  stretched  coordinates measured  from 
hingeline t i p  s ta t ion,  L e .  x = ( ~ - x ~ ) / E ,  ji = ( T I - Y ~ ) / o  

- 
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The integrals may be expressed i n  a more easi ly  handled integrable 
form by making the substi tution 

and performing the  indicated  integrations which result  in  the  shortened 
expression 

200 Log 
T B  

where 

tanhc 
B dl  = - 

The above expression  appears t o  be correct  since 
approaches  zero h a v i n g  a slope t h a t  i s  proportional t o  the  square  root of  the 
distance from the w i n g - t i p  and also  contains a term t h a t  i s  proportional t o  
l o g (  <-xc)' t o  provide  the  proper  streamwise change i n  boundary conditions 
across  the  hingeline. 

Pressure  expressions developed i n  appendix ' A '  satisfy  the boundary 
conditions around the edges of a arbitrary  configuration having  a swept 
hingeline t r a i l i n g  edge control  surface w i t h  s ide edges inboard of the 
planform t ip .  Asymptotic expansion  procedures a re  used t o  reduce  the very 
complicated boundary value problem to  three  simpler boundary value problems 
for  which solutions  are  obtained by making a direct  application of Green's 
Theorem.  The resulting  pressure  expression  obtained from the  solution o f  the 
three b6undary value problems is  given  as ( w i t h  j ;  - [-xcs and f = q-ys ) 

38 



where C1 = - [1+2ik(%-ytanA)- .-(irtanAtiB2)- i kM2 tanA ---"(jZ-jtanA)*  k2M2 
TiT B2 8' 4B2P 

+ k2M2tan2A [ (i- i tanA)2-2 (9 + .) '1 
4B2F4 

The express ion  for  P (  i , j  ,0) may be simp1 i f i e d  by  expanding  the 
exponent ia l ,   carry ing  out   the  ind icated  mul t ip l icat ion and c o l l e c t i n g  terms 
t h a t   a r e   l i n e a r   i n  ii and j which  resul ts   in   the  express ion 

- 

" p(x,?,O) = - 5 [1 + 2ik(5-EC) + d- - B2j+i tanA - 
ITF B 1 

- - OH IT k i k  - k2(<-cc) ( 4 3 )  

The l i m i t i n g  value o f   t h i s  expression f o r  A=O i s   e q u i v a l e n t   t o   t h e  
expression  developed by Landahl fo r   the   rec tangu lar  non-swept contro l  
surface. The above express ion  for  A=O i s  

and i s   i den t i ca l   t o   Landah l ' s   ze ro  sweep expression. The expression  developed 
fo r   t he   a rb i t ra ry  sweep angle  case does exac t l y   sa t i s f y   t he  change i n  bound- 
ary  condi t ions  across  the  h ingel ine and side edge o f  a swept h i n g e l i n e   t r a i l -  

- 
39 



ing  edge control  surface and should  provide smooth and continuous residual 
downwashes for which solutions may be obtained t h a t  are  relatively  insensitive 
t o  the number  of collocation  stations placed on the l i f t i n g  surface. 

Pressure expressions have also been developed  in Appendix "Bll t h a t  satis- 
fy the change i n  boundary conditions  across the side edge of a fu l l  chord 
swept leading edge control  surface. 

The zero-th  order solution i s  given i n  terms o f  an inverse square root 
function t h a t  i s  multiplied by a coefficient whose value can only be deter- 
mined a f t e r  performing a global integration. The inverse square root function 
i s  continuous i n  the  spanwise direction, t h a t  i s ,  i t  does not  exhibit any 
spanwise singularities t h a t  could contribute t o  the change i n  downwash across 
the side edge.  Consequently, the zero-th order boundary value problem solu- 
t ion  i s  not  included within the incremental pressure expression necessary t o  
satisfy the change i n  boundary conditions  across the control surface  side edge. 

The pressure  expressions obtained as solutions o f  the f i r s t  order and 
second order boundary value problems are given as follows: 

First order solution  is: 

/ 
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The second order   so lu t ion   i s :  

+ -  B [ 1 + -  (;:)(x-3yt;nA.)l x 

ri t h  ( note: si,y used here i s  not   to  be confused w 
the dowmash coordinate x ,y ) 

Pressure  distr ibutions  obtained  by  the above described  asymptotic  ex- 
pansion  process  are v a l i d   o n l y   i n   l c c a l l z e d   r e g i o n s  o f  the  planform  since  the 
d is t r ibu t ions   o f   the   ou ter   reg ions  have no t  been def ined  nor matched w i t h  
the  inner   reg ion  so lu t ions.  However, the   essent ia l   par t  o f  the  pressure 
d i s t r i bu t i on   t ha t   p rov ides   t he   d i scon t inu i t i es   i n  downwash along  the  control 
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surface edge i s  def ined  by  the  inner   reg ion  so lu t ion.  The d i s t r i b u t i o n   i n  
the  outer  regions may take on  any conven ien t . fo rm  tha t   sa t is f ies   the   requ i red  
loading  condi t ion  a lqng  the edges of the  planform  since a un ique  d is t r ibu t ion  
i s   n o t   b e i n g   d e t e r m i n e d   a t   t h i s   s t a g e   o f   t h e   s o l u t i o n   p r o c e s s .  Consequently, 
the  surface  pressure  loading  funct ions  that   provide  the downwash discont inu- 

i t ies  are  obtained  by  extending  the  appl icable  range  of   the  inner  solut ion 
and modi fy ing  these  d is t r ibut ions  to  meet the  condi t ion  o f   hav ing  the  pressure 
vanish i n   p r o p o r t i o n   t o   t h e  square root  of  the  distance  from  the edges. 

The funct ions used to  modify  the  asymptotic  pressure  expressions  are 
usua l l y   a r t f u l l y   dev i sed  and are  not  unique  expressions. However, there  are 
c e r t a i n   c h a r a c t e r i s t i c s   t h a t   a r e   r e q u i r e d   t o  be s a t i s f i e d  by these  functions 
such tha t   t he   resu l t i ng   res idua l  downwash sheet will conta in a minimum amount 
o f   d i s t o r t i o n .  Some of the  requi red  funct ional   character is t ics   are  estab l ished 
i n  the  fo l lowing  sect ion.  

Pressure  Modification  Functions 

Pressure  loading  functions  are  developed  using  the  asymptotic  pressure 
expressions and extending  the i r   appl icable range  f rom  local ized  regions  to 

cover  the  entire  planform. 

For  the case o f  a t r a i l i n g  edge control  surface,  the  asymptotic  pressure 

express ions  that   are  va l id   on ly   for   smal l   reg ions  around  the  d iscont inu i ty  
reg ion may be w r i t t e n  as 
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c (x,Y,O) i s  r e l a t e d   t o   t h e  change i n  pressure  loading  across  the P 
surface  by 

ACp = 9 2 C 
PR 

where c i s  given by the above equation (47) 
PR 

A c h a r a c t e r i s t i c   o f   t h e   f i r s t   l o g a r i t h m i c  term i s  t ha t  i t  i s  s ingular  
only  a long  the  h ingel ine and the   coe f f i c i en t   va lue   o f   t he   s ingu la r i t y  must 
be maintained  along  the  hingel ine such t h a t   t h e   u n i t  change i n  downwash i s  
o b t a i n e d   f o r   a l l   p o i n t s  on the  control   surface. Thus, t o   d i s t r i b u t e   t h i s  
func t i on   ove r   t he   en t i re   l i f t i ng   su r face  a pressure  modifying  function i s  
devised t o   m u l t i p l y   t h i s  term  such t h a t   t h e   c o e f f i c i e n t   v a l u e   i s  mainta-ined 
along  the  h ingel ine and  approaches zero a t   the   p lan form edges i n   p r o p o r t i o n  
t o   t h e  square roo t   o f   t he   d i s tance  from the  planform edges. 

The modify ing  funct ion is made  up as a p roduc t   o f  two funct ions such 
that  the  streamwise and spanwise  boundary condi t ions may be s a t i s f i e d  
independently. 
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The spanwfse modifying  function, H(II), f s   d e f f  ned  as 

1 1.0 

A (lnl-.Yo) 
where C = v  S -Yo 

YO 
= the spanwise coordinate  of   outboard  s ide edge of  the 

control  surface. 

H( q) has  a val  ue o f  1.0 and  a slope  of  zero at   the  cont ro l   sur face  outboard 
s ide edge and then  diminishes  to  zero i n   p r o p o r t i o n   t o   t h e  square r o o t   o f   t h e  
distance  from  the  planform  t ip. 

The chordwise  modif icat ion  function, El, must be devised such t h a t  El = 
1.0 a t  the  chordwise  h ingel ine  s ta t ion  to   mainta in   the  s ingular i ty   s t rength 
and must  approach  zero i n   p r o p o r t i o n   t o   t h e  square r o o t  o f  the  distance  from 
the  leading and t r a i l i n g  edges. 

However, t h e r e   i s  an add i t iona l   cond i t ion  
and continuous  residual downwash are  developed 
posed on El i s   t h a t  El must  have  a zero  slope 
the  h ingel ine  s ta t ion.  The requirement o f  hav 
t ra ted  by examining  the  resul ts  of  a numerical 

requ i red   o f  El such t h a t  smooth 
. The add i t iona l   cond i t ion  i m -  
i n  the  streamwise  direction a t  
i ng  a zero  slope may be i l l u s -  
i nves t i ga t i on   t ha t  was accom- 

p l i s h e d   t o   i d e n t i f y   t h e   e s s e n t i a l   p r o p e r t i e s   o f  El such tha t   reasonab le   d is t r i -  
bu t i ons   o f   res idua l  downwashes would r e s u l t .  

Downwash d i s t r i b u t i o n s  were obtained a t   t h e   f o u r  downwash chords shown i n  
f i g u r e  13 by applying  the  zero sweep loading  function  given as fo l lows:  

r 1 

" - 
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Figure 13. 
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Y/S - SPAEMSE COOROINATE 

Analysis Planform Used to Evaluate El Characteristics 

One of the many modifying functions  investigated i s  the  function  suggested 
by Landah13 w h i c h  has a value o f  1.0 a t  the  hingeline and approaches  zero i n  
proportion  to  the  square  root o f  the  distance from the  leading and t r a i l i ng  
edges as shown i n  figure 14. 

Figure 14. Functional  Characteristics o f  E1(t) 
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The residual downwashes tha t   r e su l t  us ing  the E1(c) function o f  figure 14 
are shown i n  figure 15 and represent  the  distributions on the a f t  portion of 
the wing-control surface  regions. The residual downwashes are smooth  and con- 
tinuous  for downwash chords tha t   a re  inboard of the  control  surface  side edge. 
However, for  spanwise downwash stations  located on the  control  surface,  the 
distributions contain a slope  discontinuity  that may not be easi ly   sat isf ied 
by the downwashes generated by the remaining  portion of the  solution  process. 

t 

. f  .6 .I .8  .9 1 .O 

X / C -   C f f O R O W I S E   C O O R D I N A T E  

Figure 15. Residual Downwash 
E 1 ( t )  Function of 

Distributions  Resulting from  Using the 
Figure 14. 

This slope  discontinuity could have  been anticipated by noting  that  the 
logarithmic term of the  loading  function may be written  as 
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and coup l ing   th is   w i th   the  E1(E) function  represented as a Taylor  series  ex- 
pansion  about  the  hingeline i n   t h e   f o r m   o f  

Figure 16. Chordwise Downwash Var iat ions Caused by 
S i n g u l a r i t y  Mu1 t i p 1   i e r  Functions 

It i s  apparent   tha t   the   f in i te   ang le   s lope  d iscont inu i ty   d isp layed  in  
f i g u r e  15 i s  due to   the  non-zero  slope a t  the  hingel ine  contained i n  the 
d e f i n i t i o n   o f  E1(c) shown i n   f i g u r e  14. Also, i t  may be noted  that   large 
curvatures i n  downwashes  may be minimized  by  devising a func t ion   tha t  con- 
ta ins   on ly  a sma l l  amount o f   c u r v a t u r e   i n   t h e   v i c i n i t y  o f  the  hingel ine. 

After  extensive  numerical   evaluat ions  of   var ious E1(c) functions,  the 
func t i on  shown i n   f i g u r e  17 represents  the  f inal   form o f  E1(c) t h a t  has been 
selected  to  modify  the  chordwise  loading  expressions. 
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Figure 17- F ina l  Form o f  Chordwise Modif icat ion  Funct ion 

Residual downwash d i s t r i b u t i o n s   o f   f i g u r e  18 were obtained  using  the 
E1(t) f u n c t i o n   o f   f i g u r e  17. It appears tha t   t h i s   f unc t i on  does provide  slope 
cont inui ty  across  the  h ingel ine as wel l  as developing minimum waviness  over  the 
r e s t  o f  the chord. Solut ions  using  th is  modif icat ion  funct ion  should  then be 
r e l a t i v e l y   i n s e n s i t i v e   t o   t h e   d i s t r i b u t i o n   o f  downwash co l loca t ion   s ta t ions .  

0 - .s .6 .I .t 09 1 .O 

ii - CHOROWISE COORDZMm 

Figure 18- Residual Downwashes Obtained  Using El( E) of   F igure 17 
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The  second logarithmic term of equation (42) contains a singularity of 
the type (n-y,) log (n-y,) t h a t  i s t o  be appl ied a1 ong the side edge of the 
control  surface. The strength of this  singularity  is t o  be maintained along 
the length of the  side edge t o  provide the proper downwash discont inui ty  along 
the side edge for  the  unsteady flow condition. 

A function (suggested by Landahl 3,  t h a t  may be  used as a pressure modifi- 
cation function to  maintain the singularity  strength along the side edge as 
well as  forcing the pressures t o  zero i n  proportion t o  the square root of the 
distance from the t r a i l i n g  edge i s  given by the following equation and a1 so 
presented in figure 19. 

T 
1.0 

L :E. Mid Chad T.'E 

Figure 19. Schematic of E 2 ( ~ , ~ ) ,  Pressure Modification  Function 
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The s ide  edge modif icat ion  function  given  by  equation  (53) has been 

investigated  using  numerical  procedures  to  determine i t s  range o f   v a l i d i t y   i n  
maintaining  the  s ide edge s ingu la r i t y   s t rengths .   Resu l ts   o f   the   inves t iga t ion  
i nd i ca te   t ha t   t he   f unc t i on   requ i res  a mod i f i ca t i on   t o   reduce   i t s  spanwise 
gradients i n  the  reg ion  o f   the  s ide  edge- t ra i l ing edge junc t ion .  It appears 
tha t   in   app ly ing   equat ion   (53)   to   the   s ide  edge pressures   tha t   the   s ingu la r i t y  
strengths b.-dr t h e   t r a i l i n g  edge are  being  modif ied  to such  an extent   that   the 
spanwise in tegrat ion  quadrature  funct ions  are  unable  to   detect   the  in f in i te  
slope  of  the  pressure  function  which  results i n  an e r r o r   i n   p r e d i c t i n g   t h e  
spanwise downwash d i scon t inu i t y .  

Equation  (53) has been modif ied  to  provide a proper  evaluat ion  of   the 
s ide  edge downwash d i s c o n t i n u i t y  and i s  given i n  the   fo l low ing   fo rm  fo r  use i n  
a f u l l  chord  control   surface  analysis.  

Equation  (54) has a va lue   o f  1.0 along  the  side edge and leading edge and 
also  forces  the  pressures  to approach zero i n   p r o p o r t i o n   t o   t h e  square r o o t   o f  
the  d is tance  f rom  the  t ra i l ing edge. 

The s ide  edge mod i f i ca t ion   func t ion  used f o r  a t r a i l i n g  edge control   sur-  
face  conf igurat ion i s  given as 

L J L  

I n   t h i s  case, the  pressures  are  forced  to  zero i n   p r o p o r t i o n  t o  the squarc 
r o o t  o f  the  d istance  f rom  both  the  leading and t r a i l i n g  edges. 
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Loading  Funct ions  for   an  Inboard  Par t ia l  
Span  Control  Surface 

Pressure loading  functions formula ted   for  a t r a i l i n g  edge pa r t i a l   span  
con t ro l   su r f ace   hav ing  side edges inboard  of the planform t i p   a r e   d e v i s e d  
from the t r a i l i n g  edge con t ro l   su r f ace  pressure expansion  of   equat ion  (42)   as  
fo l  lows : 

e,, i s  the c o n t r o l   s u r f a c e   r o t a t i o n   a n g l e   r e l a t i v e   t o  the wing 
ro t a t ion   ang le   and  measured i n  a p lane   perpendicular   to  the 
y a x i s .  

SF i s  the symnetr ical  sign f a c t o r   t h a t   h a s  a value  of  SF = 1.0 
for   symnetr ical   loadings  and SF = - 1.0 for   ant isymmetr ical  
1 oadi ngs . 

The gl(c , r - , )   loading  funct ions  are  the l o a d i n g   f u n c t i o n s   t h a t   a r e  due t o  R 

the r ight-hand semispan con t ro l   su r f ace   de f l ec t ion .  The f u n c t i o n s   a r e  formu- 
l a t e d  such t h a t  the hingeline s i n g u l a r i t y  i s  turned on a t  the inboard side 
edge and  maintained a t  f u l l  strength along the hingeline and then turned o f f  
a t  the outboard side edge. 

The g l ( c ,n ) load ing   func t ions   a r e   non- s ingu la r   fo r   spanwise   s t a t ions  R 

t h a t  are ou t s ide   o f  the spanwise   cont ro l   sur face   loca t ion .   Consequent ly ,  
the loadings   a re   ex tended   over  the rest  of  the s u r f a c e   t o  the planform tips 
where the l o a d i n g s   a r e   f o r c e d   t o   z e r o  i n  p ropor t ion  t o  the squa re   roo t   o f  
the dis tance  f rom the tips. 
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The subscripts i and o represent  the inboard and outboard side edges 
respectively. The parameters xi yi and xo, yo represent the coordinates of 
the hingeline a t  the inboard and outboard side edge stations of the control 
surface. 

The El function forces the loadings t o  go t o  zero i n  proportion t o  the 
square root of the distance from the leading and trailing edges and also 
has a value of  El = 1.0 and zero streamwise slope a t  the hingeline. 

The expression for El for stations ahead of the hingeline i s  given by 

for stations a f t  of the hingeline, 

The H(n) function is  the spanwise pressure modification function having 
a value of H(n) = 1.0 for spanwise stations located between the l e f t  hand 
outboard and right hand outboard control  surface side edges. For stations 
outboard of the outboard side edges, the H(0) function goes t o  zero i n  pro- 
portion t o  the distance from the planform t i p  station: 
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i (1 + .5t + .375t2)  

‘Lhere 

The C1 func t ion   represents   the   coe f f i c ien t   mu l t ip l ie rs   ob ta ined  in  
deriving  the  pressure  expressions by means o f  asymptotic  expansions. The 
C1 expression of   equat ion  (42) has been shortened by expanding  the exponen- 
t i a l   f u n c t i o n  and pe r fo rm ing   t he   i nd i ca ted   mu l t i p l i ca t i on   t ha t   resu l t s   i n  
the  expression 

1 + 2 i k ( ~ - E J  + 
B2 2 

The load ing   func t ions   tha t   a re  due t o  motions o f   t h e   l e f t  hand side 
control   surface  are  obtained from the above expression  by  replacing yo, yi, 

and  tanAc  by -yo, -yi and -tanAc,  respectively. 

The second par t   o f   the   p ressure   func t ion   de f ined  in   equat ion  (42)  i s  
formulated  in to   loading  funct ions  g2(s,0)  and gp(s,n)  by apply ing  other 
pressure  modif icat ion  funct ions.  The load ing   func t ion  due to   the  s ingu-  
l a r i  ty developed f o r   t h e   r i g h t  hand side  control   surface  mot ion i s  given as 

R L 

-J 
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The subscr ipts i and o per ta in   to   the   inboard  and outboard  side edges 

respect ive ly .  The  (xi, yi) , (xo, yo) parameters  are  the  hingel ine  coordinates 

a t  the  inboard and outboard  side edges respect ive ly .  

The logar i thmic   func t ion   i s   s ingu la r   on ly   a long  the   s ide  edge which 
requ i res   tha t   the   s t rength   o f   the   s ingu la r i t y  be maintained  only  along  the 
s ide edge and then may take on any other  desired  form away from  the  side 

edge. The E2(ys) funct ion i s  devised i n  such a manner as t o  have  a value 
o f  E2(ys) = 1.0 along  the  side edge to   ma in ta in   t he   s ingu la r i t y   s t reng th  
and i s   a l s o  devised t o  have a charac ter is t i c   o f   reduc ing   the   p ressures   to  
zero i n   p r o p o r t i o n   t o   t h e  square r o o t  of  the  distance  from  the  leading and 
t r a i l i n g  edges. 

Using ys to   rep resen t   e i t he r  yi fo r   i nboard   o r  yo f o r  outboard  side 
edges resul ts   in   the  fo l lowing  chordwise  pressure  modi f icat ion  funct ion.  

where = 0.10 

The spanwise modi f icat ion  funct ion H ( 0 )  i s  the same funct ion  prev ious ly  
described and i s  given  by  equation (60) .  

The C2(ys)  terms  are  obtained  from  equation (42) by  expanding  the 
exponent ia l   funct ion and performing  the  indicated mu1 t i p 1   i c a t i o n   t h a t  
r e s u l t s  i n  the  expression: 

The load ing   func t ions   deve loped  fo r   mot ions   o f   the   le f t  hand s ide 
contro l   sur face  are  obta ined  f rom  the  r ight  hand side  terms  by  replacing 

y2, yo, and  tanhc  by -y2, -yo, and -tanAc,  respectively. 
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Loading  Functions  for a F u l l  Chord Control  Surface 

Loading  funct ions  for  a f u l l  chord  control  surface  are  formulated i n  
a s i m i l a r  manner using  the  pressure  expressions o f  equation (45) and equa- 
t i o n  (46) .  

Loading  functions  developed  from  equation (45) for   the  inboard  s ide 
edge o f  t h e   r i g h t  hand s ide  cont ro l  
a t e s   o f  ii - €-xLi and = s-y i  

r 

surface  are  given in   l oca l i zed   coo rd in -  

r 
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The spanwise .modi f icat ion  funct ion H(o,yi) i s  def ined as having a value 
o f  1.0 w i t h  a zero  slope i n  the spanwise d i r e c t i o n   a t   t h e   c o n t r o l   s u r f a c e  
side edge and then  diminishes  to  zero i n  propor t ion   to   the  square r o o t   o f   t h e  
d is tance  f rom  e i ther   p lan form  t ip  and is ,   g iven by the  fo l lowing  expression: 

-(n - Y s ) / ( I Y s I  + 5 )  if 11 Y, 
where 

C =  

The modi f icat ion  funct ion E p  has  a va lue  o f  1.0 along  the  s ide edge and 
diminishes  to  zero i n   p r o p o r t i o n   t o   t h e  square r o o t  o f  the  distance  from  the 
t r a i l i n g  edge and i s  defined as 

The E3 modi f icat ion  funct ion has a value o f  1.0 along  the  leading edge 
and approaches  zero i n   p r o p o r t i o n  t o  the square roo t   o f   t he   d i s tance   f rom 
t h e   t r a i l i n g  edge and i s  given by 

where E - i s  def ined  wi th in  the  expression o f  

E = (Et + E p  + [ ( E t  - c p 3  5 
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i 
The pressure  coef f ic ients  C3 thrqugh C9 are  obtained  from  the  expressions 

o f  equations (45) and (46), and are  given as fo l lows: 

C3 - 2 6 [ 1  - ik(xCS- xrs)]/ i t  

c5 = i k[ l  - ik(xcs-  xrs)]/ E,* 

-kM2(xcs-  xrs) + i ( B2 - M 2 ) ]  
C6 = 2& k X 

$2 

[2;tanAr-( 3tan2bE-62)$ 
tanAr+ ( ik/B2) 

4 51 
c7 = 2 f i k [  -kM2(xcs LS ] [1 + ( ik /S2)( i i  - jtanAE)/2] 

-x ) + i ( B 2  - M2) 
$2 

-k2M2(Xcs-XrS 
' 8  * k[.- + '($2 B2 - ")][l + ( i k / $ 2 ) ( i  - .75itanAl) 1 

-k2M2(xCs-  xrs) + i (S2 - H2)] 
cg = ( ik2/zS2)[  - B2 

The loading  funct ion  descr ibed  in   equat ion ( 6 5 )  i s  formulated  using  pres- 
sure  express ions  that   exact ly   sat is fy   the boundary cond i t ions   a t   the   inboard  
s ide edge o f   t h e   f u l l   c h o r d   c o n t r o l   s u r f a c e   l o c a t e d   w i t h i n   t h e   r i g h t  hand semi- 
span region.  Loading  functions due t o  downwash d i s c o n t i n u i t i e s   a t   o t h e r   s i d e  
edges are  obtained  from  equation ( 6 5 )  by  inser t ing  new d e f i n i t i o n s   o f  ii and j 
i n to   the   equat ion  such that   the  equat ion  is   t ransformed  in to   loca l   coord inates 
o f   i n d i v i d u a l   s i d e  edge stat ions.  
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Loading  Functions Used i n  Solut ion  o f   Residual  Downwash D i s t r i b u t i o n  

The loading  funct ions used t o   o b t a i n   s o l u t i o n s   o f   t h e   r e s i d u a l  down- 
wash d i s t r i bu t i on   a re   de f i ned  as fo l lows:  

n = l  m=l 

where anm are  the unknown c o e f f i c i e n t   m u l t i p l i e r s  

1.3.5," an-1 -- 2N-1 symnetrical 

2,4,6,-- 2n ---- 2N ant isymnetr ica l  
- 

n t 1,2,3,""-""-- 
- 
N 

- 
N i s   t h e  nunber o f  downwash chords on a  semispan 

m - 1  

- 
m = 2,3,4, --- M 

- 
M i s   t h e  number o f  downwash s ta t i ons  on  a downwash chord 

The chordwise  coordinate e i s   n o t   t o  be confused wi th   the  cont ro l   sur face 
ro ta t i on   ang le  eH( 0 ) .  

The loading  functions  g(c,n) have  been described  only i n  terms o f  a 
pa r t i cu la r   s ide  edge de f l ec t i on   t o   i nd i ca te  how the  asymptotic  pressures have 
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been modif ied and extended to  the  planform  boundaries. The complete se t  o f  
expressions  are  provided i n  the  computer  program and are  wel l   annotated  for  
each o f   the   con t ro l   sur face   con f igura t ions  and  need no t  be repeated i n   t h i s  
sect ion.  

Output of t he   so lu t i on   po r t i on   o f   t he  program using  the above described 
load ing   func t ions   resu l ts   in   genera l i zed   fo rces   descr ibed i n  the  fo l lowing 
sect ion.  

General i zed Forces 

Generalized  forces  are  formulated  using two sets   o f   pressure  d is t r ibut ions 
t h a t   r e s u l t  from the   so lu t ion   o f   l i f t ing   sur faces   hav ing   d iscont inuous  down- 
wash d i s t r i b u t i o n s .  

Generalized  forces  are  defined as fo l lows : 

hurtdace 

where the limits of  integrat ion  are  the  physical   boundar ies  of   the ha1 f span 
conf igurat ion.  

Hi(E,~) i s  i t h  de f l ec t i on  mode shape. 

AP.(S,o) i s  the sum o f  the  singular  (asymptotic  pressures) and regular  
J 

pressures  obtained as a so lu t i on   o f   t he   res idua l  downwash 
d i s t r i b u t i o n s .  

The dimensions o f  AP . ( ~ , n )  are:  ( force/area)  (per  uni t  q .) J J 
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The @gular   pressure  d is t r ibut ion APj(E,n), i s  given as 

n-1 nrl 

where am are the coef f i c ien t   mu l t ip l ie rs   ob ta ined  f rom  the  (3 1 

in tegra l   equat ion  so lu t ion  us ing  the  res idual  downwash 

d i s t r i b u t i o n s  as boundary cond i t ions   fo r   the  jtk mode. 

f (")(n)  represents  the assumed form o f   t h e  spanwise  pressure 

var ia t ion   de f ined  in   equat ion  (69). 

g(")( C,n) i s   t h e  assumed form o f  the  chordwise  pressure 

var ia t ion   de f ined  in   equat ion  (69). 

The singular  asymptot ic  pressure  d istr ibut ion i s  given as 

g(E,n) = are  the  loading  funct ions  that  a re  formulated  using  the 

asymptotic  pressure  expressions and the  pressure  modif i -  

cat ion  funct ions  g iven i n  equation (56) or  equat ion ( 6 5 )  

depending upon the  conf igurat ion  being  evaluated. 

0 )  
*k-1 a r e   f o u r   c o e f f i c i e n t s   o f  a cubic  polynomial used t o  

def ine  the spanwise t w i s t  d i s t r i b u t i o n   o f  e,(n). 
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The program  output o f  pressure i s   1 i f t i . n g   p r e s s u r e   c o e f f i c i e n t   p e r   u n i t  
general i zed coordinate q , and i t s   u n i t s   a r e  : per   un i t   genera l   ized co- 
ord inate q I t s  numerical  values  are  proportional  to  the  modal-displacement 
input .  The program outpu t   o f   p ressures   i s   g iven  as fo l lows:  

j 
j *  

APj(E,d - PROGRAM OUTPUT 
4 PV2 

(74) 

where PROGRAM OUTPUT = 8 dS2 - o2 X 
S 

Sectional  general ized  forces may be ob ta ined  fo r  any number of a r b i -  
t ra ry   l oca t i ons   a long   t he  semispan and are  def ined as: 

The section  general  ized  forces Q$j have the   un i ts  : ( f o r c e   p e r   u n i t  
planform  dimension  per  unit   q.)x(units  of  modal-displacement  input). 

J 

The program output   o f   sect ion  genera l ized  forces has the  un i ts :   (p lan-  
form length units)x(modal-displacement u n i t s )   p e r   u n i t  q , and the  program 
output i s   p r o p o r t i o n a l   t o   t h e  modal displacement  squared and to   p lan form 
1 ength . 

j 
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The program o u t p u t  of section generalized forces 

where PROGRAM OUTPUT = 8 k2 - n2 x 
S 

~ 

is  given by 

Total generalized forces  are formulated  using the definition o f  equa- 
t i o n  (70) and the general ized force elements Qi have the units : 

(force per u n i t  q )x(units of modal -displacement i n p u t )  j 

The program o u t p u t  of t o t a l  generalized forces i s  given by 

- boS b O X t  

” 

The  program o u t p u t  has the units: (planform area units)x(modal dis- 
placement units) per u n i t  q and the program o u t p u t  i s  proportional t o  
the modal displacement squared and to  planform area. 
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I t  should be noted t h a t  the sec t iona l   genera l ized   forces   o f   equa t ion  (75) 
are used to   ob ta in   i n fo rma t ion  on the spanwise  loadings.  There is  no restric- 
t i o n  on the number o f   s t a t i o n s  where sec t iona l   gene ra l i zed   fo rces  may be ob- 
ta ined  and is limited only  by user opt ion .  

The spanwise   loca t ions  where the s e c t i o n a l   g e n e r a l i z e d   f o r c e s  are ca lcu-  
l a t e d   d o   n o t   c o i n c i d e  w i t h  the spanwise   quadra tu re   s t a t ions  where chordwise 
i n t e g r a l s   o f   e q u a t i o n  (77)  a r e   e v a l u a t e d .  The chordwise  integrals   of   equa-  
t i o n  (77) a r e   c a l c u l a t e d   a t   p a r t i c u l a r   s p a n w i s e   s t a t i o n s  depending upon the 
q u a d r a t u r e   d i s t r i b u t i o n  be ing  used f o r  a p a r t i c u l a r   c o n f i g u r a t i o n  and a r e   n o t  
p r in t ed  a s   ou tpu t   f rom the program. 

PROGRAM CAPABILITIES AND LIMITATIONS 

The computer  program  developed  around the preferred so lu t ion   p rocess  may 
be used f o r  a v a s t   a r r a y   o f   a n a l y s i s   c o n f i g u r a t i o n s  and   has   capab i l i t i e s  and 
l i m i t a t i o n s  listed below: 

1. 

2. 

3 .  

4. 

T r a i l i n g  edge c o n t r o l   s u r f a c e   c o n f i g u r a t i o n s  may be composed o f  a fu l l  
span ,   inboard   par t ia l - span ,   ou tboard  t i p  p a r t i a l - s p a n ,   o r  up  t o   s i x  
ind iv idua l   cont ro l   sur faces  i n c l u d i n g  side-by-side comnon edge cont ro l  
surfaces ,   and nested c o n t r o l s .  

For reasons   o f   de ta i l   accuracy ,   l ead ing  edge c o n t r o l   s u r f a c e s   a r e  recom- 
mended t o  be limited to   con t ro l   su r f aces   hav ing  side edges inboard  of 
the planform t i p  s t a t i o n .  

All hinge lines o f   t r a i l i n g  edge c o n t r o l   s u r f a c e s   a r e  assumed t o  be 
l o c a t e d   a t  the l ead ing  edge o f  the con t ro l   su r f aces .  All hinge lines o f  
leading edge c o n t r o l   s u r f a c e s   a r e  assumed t o  be l o c a t e d   a t  the t r a i l i n g  
edge of the cont ro l   sur face .   Cont ro l   sur face  hinge lines may have i n d i -  
v idua l   de f in i t i ons ;  however,  each h inge  l ine  i s  assumed t o  be defined by 
a l i n e a r   e q u a t i o n .  

A l l  c o n t r o l   s u r f a c e  hinge lines and  inboard side edges a r e  assumed t o  be 
represented by a sealed gap  condi t ion.  
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5 .  

6. 

7. 

8 .  

9. 

10. 

11. 

12. 

13. 

14. 

15. 

-AT1 control  surface  side edges are  assumed to  be parallel  to  the remote 
stream  direction. 

Spanwise e l a s t i c  twist distribution o f  the control  surface hinge l ine  i s  
approximated by a cubic polynomial t o  allow a spanwise variation of the 
hinge l ine  rotation o,,(u). 

Control surface camber bending i s  treated w i t h i n  the  regular  l if t ing 
surface  solution. 

L i f t i n g  surface  solutions of  planforms not having control  surfaces may 
be obtained upon user  option. 

Spanwise symmetrical or  antisymetrical   analysis may be accomplished upon 
user  option. 

Planform defini t ion  is  assumed to  consist  of l inear  segments defined by 
i n p u t  d a t a .  (See Appendix C on e f fec t  o f  locating downwash chords  near 
junctions of l inear  segments of  planform defini t ion.)  

Downwash boundary conditions may  be modified to  include  local streamwise 
velocity  variations due to a i r f o i l  thickness  effects. (See Appendix C . )  
(See reference 4 for l imitations.)  

Input mode shapes may be defined a t  many points on the  surface  (such  as 
obtained from a f i n i t e  element structural   analysis) .  

Multiple k value and Mach  number analyses may  be  made i n  a single 
machine run (see  reference 4 ,  section 3.7.2 LIMITATIONS). 

The printed o u t p u t  of  the program, obtained on user  option,  consists of 
a definition  of  kinematic downwash matrix, mathematically  discontinuous 
downwash matr ix ,  residual downwash matrix, pressure  series  coefficients, 
chordwise array of pressures a t  prescribed spanwise stations,  sectional 
generalized  forces, and total  generalized  forces. 

Intermediate  and/or f i n a l  resul ts  may  be optionally saved on tapes  for 
economy of reuse. 
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VALIDATION  STUDIES OF ASYMPTOTIC PRESSURE EXPRESSIONS 

Numerical investigations have  been conducted to  determine the  validity 
of u s i n g  any of  the  various  asymptotic  pressure  expressions  that have been 
propo~ed3’~’*  for   analysis  o f  configurations having swept hinge1 ine t r a i l i ng  
edge controls. 

The c r i t e r i a  used to  judge  the  correctness of the  asymptotic  pressure 
expressions is   that   the  residual downwashes are  required  to be smooth  and 
continuous  over  the lifting  surface  including  the  region of the  control sur- 
face  edges.  Since  the  asymptotic  pressure  expressions  are  developed  to sa t i s fy  
the  basic flow  equation and the - change i n  boundary conditions  across the edges 
of the  control  surface, then the  subtraction of the  kinematic downwash dis- 
tr ibution from the  distribution having identical  discontinuity  values must 
resu l t  i n  a residual  distribution t h a t  i s  smooth and continuous.  Otherwise, 
i t  must be  presumed t h a t  the  expressions  are  functionally  insufficient t o  
satisfy  the  original boundary value problem. 

Ini t ia l   s tudies  t o  determine  the  characteristics of the residual down- 
washes were conducted on a zero sweep planform  having a 30% chord control sur- 
face. The analysis was conducted for  several spanwise length  control sur- 
faces. The pressure  expression used i n  the  analysis i s  the  expression de- 
veloped by Landahl for  the  zero sweep rectangular  control  surface and for  the 
steady flow case  of k=O, the  expression i s  given as 

Analysis  results  obtained  for  all of the  control  surface  configurations 
indicate  that  the  residual downwashes are  smooth  and continuous  over  the en- 
t ire planform and the  final  solutions  provide  generalized  force  values  that 
are  almost  invariant w i t h  the number o f  collocation  stations used i n  the 
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analyses. Chordwise pressure d i s t r i b u t i o n s  obtained  for spanwise s ta t ions 
located a t  large  distances from the  control  surface  side edges  decrease i n  
value  montonically from the  leading edge t u  the t r a i l i ng  edge without  display- 
i n g  any chordwise  waviness i n  any of the  study  configurations  including  solu- 
t ions  for very small  span control  surface  configurations. 

I t  appears t h a t  solutions  obtained  for  the  zero sweep control  surface 
case u s i n g  the  pressure  expression  of  equation (78)  will be almost  variant 
w i t h  the number of collocation  stations used i n  the  solution  process. 

Solution  sensit ivit ies were then  obtained  for  the swept hingeline  case 
using  another  loading  function  as  suggested by Ashleyll and as  applied i n  
computer programs developed by Darras and Dat12 and by Zwaan13. 

where 

The form of  the k=O asymptotic  pressure  expression is  g iven  as 

I t  should be noted t h a t  the  only  difference between this expression for swept 
hingelines and Landahl  ' s  expression  for non-swept hingelines is the  factor $ 
as contained i n  the  multiplying  coefficient. Unsteady l i f t i n g  surface  pressure 
distributions were obtained us ing  the  constant chord 25" sweep planform of 
reference 17 shown i n  figure 20 for which experimental l i f t i n g  surface  data 
are  available.  Motion of  the  configuration i s  composed of an oscil lating  out-  
board f lap w i t h  a l l   o ther  components maintained i n  a stationary  position. 
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Figure 20 - Experimental  Planform-of  Reference  17 Showing the Slde-by-Side 
Control  Surface Arrangement. (dimensions i n  meters ) 

Figure 21  represents  the  chordwise  variation of the  in-phase  pressure 
component (AC rea l )   for  a spanwise station  that   is   located a t  a  large dis- 
tance away from the  control  surface  side edge. Experimental values  are 
represented by the open  symbols  and two theoretical  curves  are given tha t  
represent  the  solution  results  using two dis t inct ly   different   dis t r ibut ions 
o f  collocation  stations. The theoretical  results  for  the (4 ,6)  solution repre- 
sent  the  results  obtained us ing  4 collocation  stations on 6 downwash chords. 
The  downwash chords are  located at   re la t ively  large  dis tances  away from 
the  control  surface  side edge.  Theoretical  prediction u s i n g  the (4,6) d i s -  
tribution  follows  the  trends of the  experimental  values,  except i n  the region 
of the  hingeline gap  where the gap is affecting  the  experimental  results. 
Whereas, the  solution  results of (7,9) distribution  contain  a chordwise 
waviness  near  the t r a i l i ng  edge tha t  is thought t o  be  due t o  hav ing  
the downwash chords  located  very  near  the  control  surface  side  edge. The 
presence  of smal 1 pressure wave 1  engths of the (7,9) distribution  results , i n  

P 

67 



Experiment Ref. 17 

- Theory (4.6) Analysis 

.004 0- Theory (7.9) Analysis Chor&ise hp 
Location 
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0. 
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x/c - Chordwise Statlon 

- 
Figure 2 1  - Comparison o f   Theore t ica l  and Experimental  In-phase  Pressures. 

comparison w i th   t he  (4,6) d is t r i bu t i on   resu l t s ,   i nd i ca tes   t ha t   t he   res idua l  
downwash d i s t r i b u t i o n  may no t  be smooth and continuous  across  the  control  sur- 
face  side edge w i t h   t h e   r e s u l t   t h a t  some o f   t he   l ow  wave length assumed pres- 
sure modes a r e   r e q u i r e d   t o   s a t i s f y   i r r e g u l a r  boundary condi t ions  being 
generated  by  the  asymptotic  pressure  function  of  equation (79) .  

Numerical   invest igat ion has been conducted t o  determine  the  character- 
i s t i c s   o f   t h e   r e s i d u a l  downwashes being  generated  using  the  pressure  expres- 
s ion  o f   equat ion (79) app l ied   to   the   ana lys is   p lan form  o f   f igure  22. E f f e c t  
o f  the   la rge   h inge l ine  sweep angle on res idua l  downwashes should be we l l  
i d e n t i f i e d   i n   u s i n g   t h i s   c o n f i g u r a t i o n   s i n c e  tanA becomes equal t o   t he  same 
o r d e r   o f  magnitude  as fi2. 

The spanwise va r ia t i ons  of the   res idua l  downwashes obtained  from  the 

i n v e s t i g a t i o n   f o r  k=O and M=O are shown i n   f i g u r e  23. The spanwise 
v a r i a t i o n   o f   r e s i d u a l  downwash fo r   s ta t ions  ahead o f   t h e   h i n g e l i n e   i s  smooth 



8 
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Y/S -- Spanwlsc Station 

Figure 22. Planform Used t o  Evaluate Residual Downwash Characteristics. 

and continuous. However, for   s ta t ions a f t  of  the  hingeline,  there is  a f i n i t e  
discontinuity  as well as a slope  discontinuity a t  the side edges  of the con- 
trol  surface. This side edge discontinuity may be analytically  predicted, 
since i t  can be  shown that  the pressure  expression will satisfy  the boundary 
condition  discontinuity  across  the  hingeline, b u t  will not  satisfy  the side 
edge discontinuity  condition. Consequently,  use of the  pressure  expression 
of equation (79) should be limited  to  configurations having zero sweep angles 
and large span length  control  surfaces w i t h  the   res t r ic t ion  that  the colloca- 
t ion  stations  are spaced  well away from the  control  surface side edges. 
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Figure 23 - Spanwise Residua'l Downwash Distributions Along Spars Forward 
and Aft of Hingeline Using Pressure Expression of Equation 79. 

Residual downwashes have also been obtained using the configuration of 
figure 22 and applying another  pressure  expression  that has  been  used in 
computer programs developed by Rowel:  Medan': and Hewitt . The pressure 
expression contained in these  references for k=O is 

16 

This expression differs from equation ( 79 ) by having included within 
the logarithmic  function as well  as appearing in the multiplying coefficient. 

The residual downwashes  shown in figure 24 indicate that for  chordwise 
stations ahead of  the hingeline  the residual distribution are smooth and 
continuous across the  side edge. However, the distributions have a  slope 
discontinuity across the  side edges for stations  aft of the hingeline. 
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I t  was also noted t h a t  for small control surface span lengths  the magnitude 
o f  the distributions remained the same and the discontinuity peaks  were  spaced 
closer together which produces a highly localized  oscillatory distribution i n  

.4 I h b ' d  Side Outb'd Side 
Edge E 4 e  

0 

-. 2 

t F-" -~  W d  ob tfingI&ble . .  

1 1 I 1 I I I I J 
0 . I  .2  . 3  .4   .5  .6 .7 .8 .9 1.0 

Y/S- SPAMJISE COORDINATE 

Figure 24 - Spanwise Residual Downwash Distributions Along Spars Forward 
and Aft o f  Hingeline Using Pressure Expression o f  Equation 80. 

the residual downwashes. This localized  distribution i n  residual downwashes 
is  identified as  being the major contributing  factor t h a t  may produce 
questionable results for small  span 1 ength control  surface analyses. 

In order t o  a1 leviate the solution  sensitivities caused by irregular 
residual downwashes  new pressure expressions were obtained by reformulating 
the asymptotic expansion process following the procedures  suggested by 
Landahl? The step-by-step procedure i s  presented i n  appendix ' A ' .  The k=O 
pressure expression obtained from the new formulation i s  given as 

where % = S-Xcs 
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and tfie resulting  residual downwash distributions  are shown i n  f igure 25 for 
the  analysis  configuration of figure 22. I t  should be noted that  the residu- 
al   distributions  are now smooth  and continuous for   a l l   s ta t ions   e i ther  ahead 
or behind the  hingeline. The chordwise  pressure dis t r ibut ions  a t   large span- 
wise distances away from the  control  surface were  found to  be montonically 
decreasing i n  value from the leading edge to   the  t ra i l ing edge.  Furthermore, 
the  final l i f t i n g  surface pressure distributions remain almost  invariant w i t h  
the d i s t r i b u t i o n  and number of collocation  stations used i n  the  analyses. 

0 . I  .2 .3 .I .f -6  .I . d  .9 1.0 

y/S - SPMWZSE COORUINATE 

Figure 25. Spanwise Variation of Residual Downwash Distribution Using 
Pressure Expression  of  Equation 81. 

Numerical investigations have also been conducted to  determine  the  valid- 
i t y  of  the  equations developed to   sat isfy  the change i n  boundary conditions 
across  the  side edge of an osci l la t ing full chord control  surface. 

Loading functions developed for  the fu l l  chord control  surface given by 
equation (65) have  been used to  evaluate  the  residual downwash distribution. 
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The a n a l y s i s   c o n f i g u r a t i o n  is a cons tan t   chord  45" swept  planform  having 
a f u l l  chord   cont ro l   sur face  w i t h  s i d e   e d g e s   l o c a t e d   a t  60% and 80% of the 
semispan  length. The r e s i d u a l  downwash d i s t r i b u t i o n  i s  shown i n  figure 26 
and i n d i c a t e s  t h a t  the re s idua l  downwashes a r e  smooth  and continuous across 
the s ide   edges .  

Inb'd  Side Outb'd S i d e  

Residual 
Downwash 

I I 

0. .2 .4 .6 .8 1 .o 

yfs - Spanwise S t a t i o n  

Figure 26. Spanwise  Residual Downwash D i s t r i b u t i o n s   f o r  a  Full 
Chord Control  Surface Hinged a t  30 Percent Chord. 

I t  a p p e a r s   t h a t  the asymptot ic   p ressure   express ions   deve loped   for  the 
swept hinge line t r a i l i n g   e d g e  control s u r f a c e   a n d   f o r  the swept leading  edge 
Fontrol   surface  does  provide the proper  downwash d i s c o n t i n u i t i e s  and may be 
combined t o  provide analysis c a p a b i l i t y  for the pa r t i a l   cho rd   l ead ing   edge  
control sur face .  
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RESULTS, COMPARISONS AND DISCUSSION 

This section  contains an i l lus t ra t ion  of  the downwash subtraction pro- 
cedure and also provides  pressure distributions and generalized  forces  result- 
ing from analysis of  f ive wing-control surface  configurations for which ex- 
perimental  data are  available. The experimental configurations  consist of 
(1) the swept-wing w i t h  a non-oscillating ful l  span f lap of reference 18, 
( 2 )  a swept-wing having an inboard partial  span control  surface o f  reference 
19 for which non-pscillatory  pressures  are  available, ( 3 )  a rectangular wing  
having an osci l la t ing  ful l  span flap  (reference 20), (4)  a swept wing having 
oscillating  side-by-side  control  surfaces  (reference 17), and (5), a highly 

' swept delta wing having leading and t ra i l ing  edge controls  (reference 23) .  

Description of Downwash Subtraction  Process 

The configuration of reference 17, shown i n  figure 27, i s  used t o  
i 11 ustrate  the downwash subtraction  process. 

0.60 

1 

Figure 27.- Experimental P1 anform o f  Reference  17 Showing the 
Side-by-Side Control Surface Arrangement (dimensions 
i n  meters) 



9 The inboard  control   surface i s  assumed t o  be osc i l l a t i ng   abou t  i t s  h inge l ine  

a t  a reduced  frequency o f  k = 0.372 and a t  a Mach number o f  M = 0. The ro ta -  
t i o n   a n g l e   i s  assumed t o  be constant  across  the span of  the  control  surface 
having a va lue  o f  one rad ian measued i n  a plane  perpendicular  to  the y axis.  
The r e m a i n i n g   p o r t i o n   o f   t h e   l i f t i n g   s u r f a c e   i s  assumed t o  be a t  res t .  

The in-phase pa r t   o f   t he   k inemat i c  downwash d is t r ibu t ion   ob ta ined from 
the   mot ion   de f in i t ion  i s  shown i n   f i g u r e  28 for   n ine  chords  equal ly spaced 
across  the semispan. The  downwash has a un i form  va lue  o f  = 1 .O over  the 
control   surface and i s  zero  everywhere  else. 

Figure 28. Kinematic Downwash Distr ibut ion  Der ived  f rom 
Motions o f  Inboard  Flap 

Downwash d i s t r i bu t i on   resu l t i ng   f rom  the   i n teg ra l   eva lua t i on   us ing   t he  
loading  functions  defined  by  equation (56) i s  shown i n   f i g u r e  29. The d i s t r i -  
but ions  are smooth i n  regions  outside  of   the  control   surface and a u n i t  change 
i n  downwash across  the  hingeline i s  obtained  for  the  chords  that l i e  on the 
control  surface. 

" 

"_ 
" 
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?j 
i S ince   the   mod i f ied   d is t r ibu t ion   i s  smooth  and does no t   con ta in  any discont inu- 

i t i e s ,  it appears that  the  pressure  loading  functions  (equation (56)) t h a t  
were developed  from  the  asymptotic  expansion  process o f   re fe rence 3 provide 
the  proper   descr ip t ion  o f   sur face  loadings  to  be used i n  ob ta in ing   so lu t ions  
for   conf igurat ions  having  discont inuous downwash d i s t r i bu t i ons .  

Steady-State  Results f o r  Full-Span  Flap  Configuration 

The fu l l - span   f l ap   con f igu ra t i on   o f   re fe rence  18 i s  shown i n  f i g u r e  31  
f o r  which  experimental  pressures were obtained  for  various  combinations o f  
f lap   de f lec t ions  and wing  angles o f   a t t a c k .  The f l a p   d e f l e c t i o n  and wing 

1 angle o f  at tack  were  maintained a t   cons tan t   va lues   fo r  each experimental  run. 

\ K\ 425 CHORD OF 
/AIRFOIL SECTION 

Figure 31.- Experimental  Full-Span  Flap  Configuration 
NACA RM A9G13 (dimensions i n  cm) 

Experimental  pressures were obtained  along a streanwise  sect ion  located 
a t   t h e  50% semispan s ta t ion .  The long i tud ina l   j unc t i on  between the  wing and 
f lap  was sealed to   p revent   f low 1 ea kage  between the 1 m e r  and upper  surfaces 
a t   t h e   h i n g e l i n e .  

77 



The theoret ica l   pressure  d is t r ibut ions  are  obta ined  us ing a modi- 
f i c a t i o n  on the  boundary  conditions  (described i n  Appendix C )  t h a t   i n -  
c lude  local   streamwise  veloci ty  var iat ions due t o  a i r f o i l   t h i c k n e s s  
e f fec ts .  A comparison of   the  exper imenta l  and theo re t i ca l   resu l t s   a re  

shown i n   f i g u r e  32. 

0 EXPERIMENT  (NACA RM A9G13) 

- THEORY 

. 
18 .... 
1.2 - 

ACP 
.8 - . 
.4 . .... 
0- 

T I P  

Figure 32.- Theoretical and  Experimental  Chordwise  Pressure D i s t r i b u t i o n s   f o r  a 
Full-Span  Flap  Deflected by 6 = l o " ,  CL = 0.0" a t  M = 0.21  and k = 0 

The experimental  sealed gap cond i t i on   a t   t he   h inge l i ne   sa t i s f i es  
the  theoretical  assumptions  (reference 3)  and provides a one-to-one 
bas is   for   eva luat ing  the  accuracy  o f   the  theoret ica l   predic t ion method. 

The comparison indicates  that  the  experimental  values  are  theo- 
re t ica l ly   predic ted  wi th in   very   c lose  to lerances  over   the  ent i re   length 

o f   t h e  chord even i n  t h e   v i c i n i t y   o f   t h e   h i n g e l i n e .  
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Steady-State Results for  a Partial-Span  Flap  Configuration 

The partial-span  control  surface  configuration shown i n  figure 33 
represents the experimental planform o f  reference 19 to  obtain chord- 
wise pressure  distributions due to a steady  flap  deflection.  Pressures 
were obtained  along a streamwise chord located a t  the 46% semispan 
s ta t ion.  The hingeline gap was sealed  providing a one-to-one basis  for 
comparing theoretical and experimental resul ts .  

LOCATION OF PRESSURE 
ORIFICES 

- 4 5 . 7 - 1  

LINE 

Figure 33. -  Experimental Planform of  a Partial-Span Flap Configuration of 
NACA RM L53C23 (dimensions i n  cm) 

Theoretical  pressures were obtained  along  various  streamwise chords 
spaced over  the semispan and are shown i n  f igure 34. The comparison 
indicates t h a t  the  experimental  pressures  are  accurately  predicted by 
the  theoretical  technique  over  the  length o f  the chordwise s t r i p  for- 
ward of the  hingeline. The theoretical  distribution  over  the  control 
surface  are  only  slightly  larger than  the  experimental  values. Con- 
sequently, i t  appears t h a t  the l i f t s  and hinge moments  may  be predicted 
w i t h i n  reasonable  accuracy  limits  for  configurations having a sealed 
gap a t  the wing-control  surface  junction. 

79 



ROOT 

Figure 34. Theoretical and Experimental Pressure  Distributions for Part ia l -  
Span Flap Deflected by 6 = lo", a = O", a t  M = 0.60 and k = 0 

Rectangular  Planforms Having Full-Span Control Surfaces 

Two rectangular planforms  having aspect  ratios of 1.0 and 2.0 were tested 
i n  combination w i t h  a 40% chord f l a p  for various  values of  reduced frequencies 
t o  o b t a i n  hinge moments and l i f t s  due t o  the  control  surface motions. The 
experimental da ta  are  reported i n  reference 20. Each planform had a small gap 
along i t s  hingeline t h a t  may have a small influence on the  pressure  distri- 
butions i n  regions  near  the  hingeline. 

Experimental and ,theoretical  values of hinge moments and phase angles 
as a function of reduced  frequency are  presented i n  figure 35 for the  aspect 
r a t i o  2.0 planform. The theoretical hinge moments appear t o  agree  with  the 
experimental  values; however, there   is  a discrepancy i n  the  predicted phase 
angles t h a t  may be  due t o  the open gap a t  the  hingeline. 
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Figure 35.- Theoretical and Experimental Hinge Moments and Phase  Angles for an 
Oscillating Full-Span F lap  A R  = 2.0 Configuration of WADC TR 53-64 

Comparison of wing 1 i f t s  and phase angles are shown i n  figure 36. 
There is good agreement  between the theoretical and experimental results 
over the entire range of reduced frequencies used i n  the tests. Conse- 
quently, i t  appears t h a t  wing  l i f t   i s  n o t  greatly  affected by open gaps 
a t  the  hingeline. 
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Figure 36.- Theoretical and Experimental Lifts and Phase  Angles for  an 
Oscillating Full-Span Flap AR = 2.0 Configuration of  WADC TR 53-64 
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Experimental and theoretical   results  for the fu l l  span control 
surface  configuration of aspect  ratio 1.0 are  shown i n  figure 37 and 
figure 38. Again, the  theoretical method appears to  predict  reasonable 
values o f  hinge moments  and t o t a l   l i f t s ;  however, the  predicted  hinge 
moment phase angles  deviate from the  experimental  values and the  dis- 
crepancy may be  due to  the open  gap a t  the  hingeline. 
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Figure 37.- Theoretical and Experimental Lifts and Phase Angles for an 
Osci 11 ating Full -Span F1 a p  AR = 1 . O  Configuration of WADC TR 53-64 
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Figure 38. - Theoretical and Experimental Hinge Moments  and Phase Angles for  an 
Oscillating F u l l  -Span Flap A R  = 1 .O Configuration of WADC TR 53-64 
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The d i f fe rence may a lso  be caused b y   t r a i l i n g  edge flow separation 
tha t   cou ld  have been experienced  during  the  test  since  there i s  a very 
la rge   adverse   p ressure   g rad ien t   a t   the   t ra i l ing  edge that   might   not  
have been maintained  during  the  experiment.  (see page 315 o f  reference 
24 f o r   t he   p ressu re   g rad ien t   p lo t   o f   t he  NACA 0010 a i r f o i l   s e c t i o n  used 
i n  the  experiment. ) 

E f f e c t   o f   H i n g e l i n e  Gaps on  Chordwise  Loadings 

A theoret ica l   s tudy has been made (reference 21) t o   i nves t i ga te   t he  
ef fect   of   h ingel ine gaps  on chordwise  pressure  d istr ibut ion,  and the 
resu l ts   a re  shown i n   f i g u r e  39. 

Figure 39.- Non-Dimensional L i f t   D i s t r i b u t i o n  (reproduced  from  reference 21) 
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The study  configuration i s  composed of a pair  of two-dimensional  equal 
chord l i f t i n g  surfaces  that  are placed i n  a coplanar  arrangement. The 
leading  surface i s  a t  a zero  angle of attack and the  trail ing  surface is 
given an angle  of  attack by rotating  the  surface  about  its  leading edge. 
Chordwise pressures  are  obtained  for  various  separation  spacings i n  steady 
flow. 

For a zero gap spacing,  the  loadings produced a t  the  junction of the two 
surfaces  exhibit  the  typical symmetrical logarithmic  singularity  identified 
fo r  a discontinuous downwash distributions of a two-dimensional wing-control 
surface  combination. As separation  begins,  the  loadings on the w i n g  near  the 
wing t ra i l ing  edge change from a s ingular i ty   character is t ic  t o  a loading  that 
becomes equal t o  zero. However, the  loadings  near  the  leading edge of the 
control  surface change from a logarithmic  characteristic t o  t h a t  of having  an 
inverse  square  root  singularity  that  causes a higher  loading t o  ex i s t  on the 
control  surface for  the open  gap condition t h a n  for the  zero gap condition. 

Large separation  distances between the  surfaces  result i n  loadings  that 
are  vastly  different from the  zero  Separation  case. However, small separa- 
tions affect  the  pressure  distributions  only  in  localized  regions  near  the 
hingeline. I t  appears  that  the  zero gap theoretical method wi l l  provide 
reasonable  predictions  of  total   l if ts  and moments for configurations having 
small  hinge1 ine  gaps. 

Side-by-Side  Control  Surface  Configuration 

The side-by-side  control  surface.configuration  is shown i n  figure 27 for 
which unsteady  pressures  are  obtained  for  various combina.tions of  f l a p  de- 
flections.  The experimental model had small open gaps a t  the  hingelines and 
a t  the  side  edges. Reference 17 provides no information t o  define  the  exact 
dimensions between the  control  surface  side edges and the  pressure measuring 
stations  located  in  the  vicini%y of the  side  edges. The spanwise location of 
the  experimental  pressure  chords were established by measuring the  pressure 
chord locations  off  the planform  drawing. 
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Figures 40 and 41 present  comparisons of theoretical  and  experimental 
results  for a mode  shape in which  both  flaps are oscillating  with  the  same 
phase  and  amplitude  and  the  wing  is  maintained  in a stationary  position. 
There  is  good  agreement  between  the  theoretical  and  experimental  results in 
all  areas except in  localized  regions  near  the  hingelines. The experimental 
values are less  than  the  theoretical  values  forward of the  hingeline  and 
slightly  greater  than  the  predicted  values  aft of the  hingeline.  The  varia- 
tions  near  the  hingeline  are  attributed  to  the  open  gaps at the  hingelines. 
Even  though  the  comparisons  deteriorate in regions  near  the  hingeline, it 
appears  that  the  total  lifts  and  moments  may  be  estimated  within  reasonable 
bounds  for  configurations  that  have small  open  gaps at the  hingelines. 

0, m, A EXPERIMENT ( AVA FB-7025 1 

- THEORY / 1 

Figure 40- In-Phase Pressure Distributions  for Both Flaps  Oscillating w i t h  
the  Same  Phase  and Amp1 i tude. Ai .f = 0.82", A o e f  = 0.82", 
A,,, = O", k = 0.372, and M = 0 
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Figure 41. Out-of-Phase Pressure Distributions  for Both Flaps Oscillating 

Figures 42 and 43 present comparisons of theoretical and experimental 
pressure distributions  for a mode shape i n  which the outer f l a p  is  oscillating 
and the inner flap and wing are maintained i n  a stationary  position. 

Figure 42. In-Phase Pressure Distributions Resulting from Motions Of Outer 
Flap A i .  f.  = 0 " s  A o * f .  = 0.66", \ = O", k = 0.372, and M 0 



Figure 43 .- Out-of-Phase  Chordwise  Pressure Distr ibutions  Result ing  from  Motions 
o f  Outer  Flap. AiBf,= O " ,  A O s f  = 0.66", \= 0", k = 0.372, and M z O  

Again,  the  only  area where the comparisons d e t e r i o r a t e   i s   w i t h i n  
the  h ingel ine  reg ion and i s  probably due t o  open  gap e f f e c t s   a t   t h e  
h ingel ine.  

Swept De l ta  Wing with Leading and T r a i l i n g  Edge Controls 

The p lanform  conf igurat ion shown i n   f i g u r e  44 represents  the  experimental 
p lanform  of   re ference 22 where experimental  studies were hccomplished t o  
inves t iga te  use o f   a c t i v e   c o n t r o l s   t o  suppress f l u t t e r .  Steady state  h inge 
moments ob ta ined   w i th in   t h i s   i nves t fga t i on  were reported  wi th in  reference 23 
and are  reproduced i n  f igure 45. 
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Figure 44- Experimental Delta-wing Model o f  NASA TM X-2909 
(all linear  dimensions in meters ) 
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TRAILINC EDCE CONTROL 

m03 - -03 - 
0 "a 

e o 2  - CALCULATED (Ref. 23) e o 2  - 
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(Ref. 23) 
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Figure 45. Comparison o f  Measured and Calculated  Static Hinge 
Moment Coefficients 



Two sets of  analysis  results  obtained from the present procedure are 
superimposed on the   t es t   resu l t s  of figure 45. The s e t  of resul ts  denoted by 
the symbol * represent  the  solutions  obtained using standard f l a t   p l a t e  
boundary conditions. The s e t  of resul ts  denoted by the symbol 0 represent 
the solutions  obtained using local  linearization o f  boundary conditions  to: 
include  effects  of  incremental  velocities due to  thickness  distribution  as 
described i n  Appendix C. 

I t  appears  that the application of local  linearization of boundary con- 
dit ions does affect   the hinge-moments  of the  t ra i l ing edge control  surface. 
However, there is only a s l igh t  change i n  hinge-moments of the leading edge 
control  surface due to  local  l inearization  effects.  

The analytical   results appear to   correlate  well w i t h  the  experimental 
data  for  the Mach range of in te res t .  The comparison tends  to  deteriorate  as 
the Mach number approaches 1.0 which may be due to  shock ef fec ts   tha t  may be 
caused by the  control  surface  deflection. 



CONCLUSION 

1 

r A theoretical  analysis and computer program has been developed for  the , 

3’ prediction of unsteady lifting  surface  loadings caused by motions of leading 
edge and t r a i l i ng  edge control  surfaces having sealed  gaps. The program has 
been developed around a.  systematic  solution  process where the  discontinuities 
i n  the downwash distributions  are  separated (and hand led  separately)  prior  to 
applying  standard  lifting-surface  solution  techniques. 

Theoretical  results  are  presented  to  demonstrate  the  versatility of the 
program capabi l i t ies .  Comparisons of theoretical and experimental  data are 
presented  for  five wing-control surface  configurations. Two of the  experi- 
mental configurations had sealed gaps a t  the  hingelines, and two configura- 
t ions had small open gaps. 

The comparisons indicate t h a t  reasonable  pressure  distributions  are ob- 
tained  for  the  sealed gap cases, b u t  there  are moderate differences  near  the 
hinge1 ines for the open gap cases. 

Pressure  distributions and hinge moment coefficients  obtained for a l l  
t r a i l i ng  edge control  surface  configurations  appear t o  approximate  the  experi- 
mental values  within  close  tolerances. 

Hinge-moment coefficients  obtained  for  the one leading edge control  sur- 
face  configuration does not  appear  to be sensit ive t o  the use of local 
l inearization of boundary conditions.  Analysis  results  correlate well with 
experimental  data  for most of the Mach number range except  for Mach numbers 
i n  the  close  vicinity  of 1.0. 
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APPENDIX A 

DEVELOPMENT OF PRESSURE EXPRESSIONS THAT SATISFY THE BOUNDARY CONDITIONS ON A 
TRAILING EDGE CONTROL SURFACE HAVING A SWEPT HINGELINE 

Pressure  expressions  are  formulated  such  that  the  boundary  conditions  are 
exac t l y   sa t i s f i ed  and the   res idua l  downwashes tha t   remain   a f te r   sub t rac t ing   the  
downwash d iscont inu i t ies   a re  smooth  and continuous  across  the  side edge o f  t he  
control  surface. The analyt ical   procedure used to   ob ta in   t he   exp ress ions   i s  
the  asymptotic  expansion  process  suggested  by  Landahl i n  reference 3 . 
So lu t i ons   o f   t he  boundary value  problem  obtained  by  application  of  Green's 
theorem  provides  the  required change i n  boundary condit ions  across  the  hinge- 
l i n e  and side edges such that   subt ract ion  o f   the  d iscont inuous  k inemat ic  down- 
wash d i s t r i b u t i o n   r e s u l t   i n   r e s i d u a l   d i s t r i b u t i o n s   t h a t   a r e  smooth  and 
continuous f o r  which  standard l i f t i n g   s u r f a c e   s o l u t i o n s  may be readi ly   appl ied.  

The analysis  coordinate system i s  shown i n   f i g u r e  46 where the  z,? 
coordinates  are  referenced  to  the  inboard  side edge o f   t he   h inge l i ne .  

.. 

WING 

Figure 46 : Analysis  Coordinate System 
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The L inear ized boundary value problem i s  developed i n  terms  of the 
pressure  perturbat ion C p - F e  kt where the  pressure magnitude s a t i s f i e s  

the  equation o f  f low 

B ~ P ~  + P.-. + F- - 2 i  kM2P2 + k2M2F = 0 
4 

YY zz 

and boundary condi t ions on the  sur face  o f  

- 29, [S(j;-xc) + 2 i k  - k2(X"-xc) U(p)] f o r  x xc 

0 """""""" f o r  X < xc 

- - 
pz - ,.d 

Scal ing  the Z coord inate  to  remove the B 2  factor  we l e t  

- 
- x  

'0 B 
" Yo = Y zo = z 

- Y 

and the  equat ion  o f  f low becomes 

The terms o f  the  boundary  condi t ion  are  modif ied  by  let t ing 

x-xc = x-y tan A 
" 

= B(xo-yo  tan A B )  

= B(X0-Yo tan A I )  

and no t ing   t ha t  

&(ax)  = a &(x )  1 
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f /,; Thus the  boundary  conditions  are  given as 

' z o  I 0 " " " " " " " " " -  

The f i  r s t   d e r i   v a t i  ve t e r m   o f  (A4) i s  now removed 
J, def ined as 

F = e x p  ( B ) J ,  i kM2xo 

which will change the  f low  equat ion  into  the form 

(A51 
" f o r  x. c x 

co 

by  def in ing a var iab le  

and provide a boundary c o n d i t i o n   d e f i n i t i o n  of 

- 20H [' @(xo-y0tanhl + 2 i  k - k2B2 (x,-yotan$ )] e 
-ikM2xo/B yo 

0 """"""""""""" Yo < 0 
(A81 

To study  the l i f t i n g   s u r f a c e  problem i n  t h e   v i c i n i t y  of  the  corners a1 1 
coordinates are scaled by E 

tha t   mod i f ies   the   d i f fe ren t ia l   equat ion   in to   the   fo rm  o f  

+ I)" + I)22 + E - qii yy B 2  J , = o  
2 k2M2 

and provides a boundary condi t ion 

I -29, [&6(%jitanAl ) + 2i k - 
E$$= 

lo - - - - - - - - - - -  

d e f i   n i  ti on o f  

k2EB(i-TtanA1 ) ]  e  -ikM2EZ/B y 2 0 

"""""" y < 0 (A101 
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We now seek so lu t i ons   o f   t he  form 

and  expand the  exponential i n  the boundary cond i t ion  and s e t   t o  zero  the 
co l   lec ted terms of equal powers i n  E. We f i n a l l y   a r r i v e   a t   . t h e   f o l l o w i n g  
boundary  value  problems whose  sum o f   s o l u t i o n s  w i  11 s a t i s f y   t h e   o r i g i n a l  
boundary  value  problem. 

v2 q0 = 0 

"""""""" Y < O  
- 

r2 = O 

L 
Since  the  boundary  value  problems  contain  (or can  be made to   con ta in )  a 
Laplace  equation V2p0 then use o f  Green's  theorem may be readi ly   appl ied 
to   ob ta in  sol u t i  ons of  the  form 
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where 

represents the surface boundary conditions on the T=O plane and the Green’s 
function (developed from the method of  images) 

1 1 

v =  I + I 

((x-s1)2 + (y-7)’ + (z+Y)2)% ((x-Y)2 + (y-jq2 + (z-T)2)% 

v s a t i s f i e s  the conditions of 

Integration of (A15) i s  accompli shed i n  rectangular  coordinate system 
tha t  have coordinates  defined w i t h i n  figure , and the coordinate  subscripts 
and bars  are removed w i t h  the understanding tha t  these are  scaled  coordinates 
and that  the  solution w i  11 be finalized i n  physical  coordinates a t  the end of 
this section. 

Solution of the Zeroth Order Problem 

The zeroth  order boundary value problem is given as 
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Subst i tu t ing  the  boundary  condi t ions  in to   equat ion (A15) gives 

c o w  

OH G(x-y’tanAl)U(y’)dx’dy’ 
$o(x,Y,z) = 5 

-00 -00 

Changing  the 1  ower i n t e g r a t i o n  1 imi t o f  y’ (due t o  U(y ’)) and 
the x’ i n t e g r a t i o n  produces  the  expression 

s u b s t i t u t i n g  x=x-x,+ytanAl i n  (A17) y i e l d s  

OH 1 
” (((.-xc) + (y-y’) + (y-y’)’ + z2)% 

$oo(,Y,z) = - dy ’ 

Expanding  the  terms i n   t h e   r a d i c a l   p r o v i d e s  

dy ’ 
( (l+tan2A1)  (y0-y)2-2(x-xc)tanAl ( y ’ - y ) + ( x - ~ ~ ) ~ + ~ ~ ) ~  

t h a t  i s  i n t e g r a t e d   t o   y i e l d   t h e   f u n c t i o n  

$o(x,y,z) = + (a)’ (an2 + 2bv + c)’ + an + b 1 
00 

+ Qo(Regular) 

-Y (A181 

98 



where 
a = (1 + tan2 A l )  

b = - (x-x,) tan  Al 

c = (x-xc)2 + 22 

The divergent  upper limit i s  handled i n  the manner of Landhal and the 
expression i s  reduced t o   t h e   f o r m   o f  

$o(x,Ysz) = - -OH TB - (a)’ & [(a)’  (x2+y2+z2)’ - (y+xtanAl) 1 + 1ClO(Regular) (A19) 

where  x,y,t are  scaled  coordinates. A check may  now be made  on whether  the 
boundary  condit ions  are  satisf ied. The boundary condi t ions on the z=O plane 
are  evaluated as fo l lows 

(a)’ (x2+y2+z2)’ + (y+xtanAl ) (a)’z 

a(X2+y2+z2) - (y2+2~tanAl+x2tan2Al ) I (~2+y2+~2) ’  

reorganiz ing  th is  expression  by  insert ing  a=( l+tan2hl)   into  the  denominator 
of the  bracketed  term we obta in  

- = ”  alClo -OH 1 + (y+xtanR1 ) (a)’ z 
a t  .rrB (a)% I (x2+y2+z2)’ I (x-ytanAl  )2+az2 

and no t i ng   t ha t  lim - - - T S ( X )  then x2+u2 
X*O 

99 



which i s   i d e n t i c a l   t o   t h e   s c a l e d  boundary condit ions  of  equation  (12-A) and 
thus  the  funct ion  o f   equat ion (A19) i s  a v a l i d   s o l u t i o n  of  the  zeroth  order 
boundary  value  problem. 

Scaled 
re tu rned   t o  

,.. 
X by - .  

BE ’ 
X 

coordinates  are  used i n  equation (A19) and the  expression may be 
phys i cal  coordi  nates  by  rep1  aci  ng 

- 
tanhl - - * - tanh ;4= & . 

B ’  B ’  
B 2  = B 2  + tan2A 

to  provide  the  zeroth  order  pressure  expression on z=o o f  

So lu t ion  o f  F i r s t  Order  Problem 

The f i r s t   o r d e r  boundary  value  problem i n  scaled  coordinates i s  defined 

bY 
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F 
%! B 

i’ ,\! and i s  d i v i d e d   i n t o  two separate  problems  corresponding t o   t h e  two  terms w i t h i n  
the boundary condition  statement. The f i r s t   p a r t   o f   t h e   f i r s t   o r d e r  problem i s  
defined as 

V2Jll = 0 
A 

Inser t ing   the  boundary condi t ions  in to   equat ion (A15) and changing l i m i t s  
due to  the  uni t   funct ions  provides  the  expression 

( K , j G )  = + dx’dy‘ 

A s t r a i g h t   f o w a r d   i n t e g r a t i o n   o f   t h i s   e q u a t i o n   f o l l o w e d  by a transformation 
of  the  coordinates in to   phys ica l   coord inates 2=0 y ie lds   the   so lu t ion  

(A24 1 
The second p a r t  o f  the f i r s t   o r d e r  problem i s  given as 

C B  V2$l1 = 0 

Again i n s e r t i n g   t h e  boundary cond i t ion   in to   equat ion  (A15) and performing 
the  indicated  integrat ion  y ie lds  the  expression  for   the  pressure  term i n  
physical  coordinates on z=o plane  given as 
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The above s o l u t i o n s   o f   t h e   f i r s t   o r d e r  boundary  ,value  problem have  been 

obtained  using  the  same’techniques  of  Landahl i n   t h e   e v a l u a t i o n   o f   t h e   i n t e g r a l  
a t   t he   d i   ve rgen t  upper 1 i m i  t. 

I 

So lu t i on   o f   t he  Second Order  Problem 

The d e f i n i t i o n   o f   t h e  second order boundary val  ue problem  given i n  scaled 

coordinates i s 

- k2M2 - - 7 q 0  

+ k2(3(z-y”tanAl)  U(z-y”tanAl) (A261 

The d i   f f e r e n t i  a1 equation i s  a Poisson  equation whose so lut ion  requi res 
added manipulations  over  the  procedures used in   ob ta in ing   the   p reced ing  

boundary  value  problem  solutions. The technique  appl ied  here  to  obtain  solu- 
ti ons o f   t h e  second order  problem i s  one of redef in ing  the boundary  value 
problem i n t o  separate  parts and ob ta in ing   ind iv idua l   so lu t ions  whose  sum will 
s a t i s f y   t h e   o r i g i n a l  boundary  value  problem. 

We f i r s t  seek so lu t i ons   t ha t   sa t i s f y   t he   f o l l ow ing  boundary  value 
problems 
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(A30) 

Sol u t i  ons of  the 1 ast   three boundary  value  problems may be obtained i n  the 
same manner t h a t  was used to   obta in   the  so lu t ion  o f   the  zeroth  order  boundary 
value  problem.  Insertion  of  the  boundary  conditions  into  equation (A15) and 
per forming  the  s t ra ight   forward  in tegrat ion will r e s u l t  i n  the  desired  solut ions 
which w i  11 be  summarized a t   t h e  end of t h i s  development. 

Sol u t i  on o f   t h e  Poisson  equation and i t s  associated boundary  condi t i o n  i s  
obtained by seeking a s o l   u t i  on of   the  form 

such t h a t   i s  a s o l u t i o n   o f  

k2M2 v%2p = - B2 JIo 



Once 14~' i s  obtained  then  the boundary conditions  developed  by q2' are 

determined  by  evaluating  the  function lim ( all2'/ a2 ) 
LI P O  

Then a new boundary  value  problem i s  formulated  such t h a t  $2q will s a t i s f y  

Thus the sum o f  $2p and I#: wi 11 then  sat is fy   the  d i f ferent ia l   equat ion 

having  boundary  condi ti ons 

In   o rder   to   s imp l i f y   the   express ions  a coordinate  transformation i s  made 
such t h a t  new coordinates  are  defined  along and perpendicular  to  the  h inge 
l i n e  as  shown i n   f i g u r e  47 . 

Figure 47 : Rigid  Rotation  Coordinate  Transformation 
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l -  x = X cos Al - sin A1 

y = sin A1 + cos Al 

z = E  

or 
1 ...- 

x = x cos A1 + 7 sin Al 

L. 

y = - x sin Al + 7 cos Al 
- 

Using the above relationships i t  can  be shown t h a t  

"- 
V2(5t$,Z) f v2(x,y,z) 

(x2+p2+22)% = - (z2+72+-2)% E R 

and t h a t  the solution of  the zeroth order problem may be expressed as 

We now seek a solution of Poisson's equation by devel op ing  an expression having 
a1 1 the required characteristics t h a t  remai n after performing the  three co- 
ordinate second derivative operation. One such expression t h a t  may fulf i  11 
these requi  rements i s  

where A and B are t o  be determined  such t h a t  

V 2 ~ 2 p  = C & (R - 7) 

where C = (9) TB 
OHcosAl 

now 
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and noting  that  for a general  function (uv) 

v2uv = uv2v + 2(VU) *' (vu) + v v2u 

then 

now V2h(R-F)=0 since this is a solution  to the zeroth  order problem, also 
V2R2=6 and 2 ( V R 2 ) *  (V&(R-7)) = 4. Therefore , the  expression becomes 

V2qZp = A [4 + 6 h (R-7) ] + 6B 

= 6A & (R-y) + (4A+6B) 

and constants must take on value  of 

C C 
A = G - ;  B = -  B 

to   sat isfy  the  different ia l   equat ion.   Final ly ,   the  pressure expression  that 
sa t i s f ies   the  Poi sson  equation i s  given  as 

or  

$2 -id - CR2 3h( R-7) - 23 

The boundary conditions  generated by $2p are  now determined by performing 
the differentiation of JIZp w i t h  respect  to z and evaluating  the 1 imi t i n g  
functional  value  as z -f 0. 
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The 1 imi t i n g  value of the first two terms as z -+ 0 are  identically equal 
to  zero and we are  l e f t  w i t h  the l i m i t i n g  value of the   l as t  term. 

(A371 

L 

In summary, the  function 

I V2Q2' = CRn(R-7) 

and produces the boundary condition given as 

lim - = where C =(") nB 

Z+ 0 

P QHcoshl 
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The n e x t   s t e p   i s   t o   f i n d  a funct ion J12q such t h a t  it sat is f ies   the  

boundary  Val ue problem 

Following  the same procedure  that was used to  solve  the  zeroth  order  prob- 

lem resu l t s   i n   t he   exp ress ion   f o r  JIZp given as 

Fina l l y ,   the   so lu t ion  of  the  Poisson  equation 

having  zero  boundary  condi ti ons 

i s  given by the sum of  solut ions 

where 
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4’ y 
The expression  for  T2 i s  separated i n t o   s i n g u l a r  and regular  expressions 

that   are  funct ions  o f   the  sca led and transformed  coordinates 

The expression  given i n  physical  coordinates i s  obtained  by firSt r o t a t i n g  
the  coordinate system  back in to   the  sca led  coord inate system  (where ‘ 0 ’  sub- 
sc r ip t s   a re  used t o  denote  scaled  coordinates)  then  transform  from  scaled 
coordinates  to  physical  coordinates. 

R E (z2+ji2+y2)’ = (xo2+yo2+zo 2 )’ 

- 
y = xosi  nhl+yocosAl 

The s ingu la r   par t   g iven   in   sca led   coord ina tes   i s  

- ~ 2 ( ~ o , y o , ~ o ) = ~ ( [ ~ o 2 + y o 2 + ~ o 2 ] - [ x o s i n A l + y o ~ ~ s A l ] 2 ) L ~ ~ [ ~ 0 2 + y O 2 + z o  2 3 4- [xosinA,+yocosAl]] 

(A42 1 
The expression in  physical   coordinates i s   f i n a l l y  developed  by  applying  the 
scal ing  t ransformat ions 

Thus, the  s ingular  part   of   the  pressure  expression  obtained  f rom  the  solut ion 
of  the  Poisson  boundary  value  problem i s  given as 

The r e s t   o f   t h e   s o l u t i o n s   r e q u i r e d   t o   s a t i s f y   t h e   r e m a i n i n g  second order 
boundary  value  problems  defined  by  equations (A28) , (A29) , and (A30) may be 
obtained by i nse r t i ng   t he  boundary cond i t ions   ln to   equat lon  (A15)  and perform- 
ing   the   ind ica ted   in tegra t ion .  The so lut ions  obta ined and expressed i n  
physical  coordi  nates  are summarized as f o l  1 ows : 
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Q2$: = 0 BOUNDARY VALUE  PROBLEM 
IN ,SCALED  COORDl  NATES. 

a$ 

Zof 0 B 3  

- OHk2M4xO2 - - ~(xo-Y0tanAl )U(Y0) (A44 1 

Solution  given in physical coordinates is 

where 

r v2$2B = 0 BOUNDARY VALUE  PROBLEM 
IN SCALED  COORDINATES. 

Solution in physical coordinates is 

20,,k2M2 
E q  = TrB2 [-$ (z-jhanA)2 - - - 1 (z2-ZytanA) &[R2-y2] 

(3 1 
20Hk2M2 ” - 
Tf32 

XY h [ R 2 - x ” ]  (A471 
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A' 7 

BOUNDARY VALUE  PROBLEM 
I N  SCALED  COORDINATES. 

= 2oHk28(xo-yotanA, )U(xo-yotanAl )U(y0) ( A 4 8 1  

Solu t ion   in   phys ica l   coord ina tes  

The p ressu re   coe f f i c i en t   t ha t   sa t i s f i es   t he  boundary  value  problem o f  
equations ( A l )  , ( A 2 )  may  now be expressed as a sum o f   t h e   i n d i v i d u a l  
so lu t ions  
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The  expression for p(x,y,o) may be simplified by expanding the 
exponential , carrying out  the indicated multiplication  and  collecting  terms 
that are  linear in x and y. The resulting expression then becomes 

- - 7r OH [Zik - k2(c-cc) ] 5 en [ (;i2+f32i2)4 - i i ]  
The limiting value of this expression for A=O is equivalent to the 

expression developed by Landahl (reference 3 ) for  the rectangular non-swept 
control surface. The above  expression  for A=O is 

Thus, the  expression  for P(x,y,o) appears  to have the necessary 
characteristics  to  provide  a proper solution of  the swept  hingeline boundary 
value problem and compares favorably with the widely accepted expression of 
Landahl for the  zero sweep case. 
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APPENDIX B 
,DEVELOPMENT  OF PRESSURE DISTRIBUTIONS TO SATISFY THE BOUNDARY 

CONDITIONS  FOR A SWEPT  LEADING EDGE CONTROL  SURFACE 

Pressure  distributions  are  formulated  using  the  asymptotic  expansion 
process  suggested  by  Landahl  (reference 3 ). The analysis  coordinate system 
shown i n  f i g u r e  48 represents a  segment o f  a  swept  wing leading edge having 
a contro l   sur face  that   osc i l la tes  about  a h inge l ine  a f t  o f   t he   l ead ing  edge. 

n-Y 

Figure 48: Analysis  Coordinate System 

So lu t ions   o f   the  mixed  boundary  value  problem  are  obtained  using  the 
l i nea r i zed   pa r t i a l   d i f f e ren t i a l   equa t ion   o f   f l ow   g i ven  as 

The motion o f   t h e   c o n t r o l   s u r f a c e   i s  assumed t o  be sinusoidal  and i s  
def ined i n  non-dimensional  coordinates as 

Zc = o,(X - ZC) e i k t  
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The boundary cond i t ions   resu l t ing  from the  control   surface  mot ion  are 

?!k= -t azc i k z c   f o r  y<O on z=O 
a: - x>y tan  A 

fo r  y<O on z=O - 
x>y tan  A 

- 
x<y tan A 
(ahead  of leading edge) 

i 

The f i r s t  two expressions may be combined i n t o  a s ingle  expression  for   the 
change i n  boundary condi t ion  across  the  cont ro l   sur face  s ide edge 

A t ransformat ion  or   sca l ing  o f   coord inates i s  made t o   s i m p l i f y   t h e   d i f f e r e n t i a l  
equation  by  defining 

x. = x/B; yo = y; 
- 

zo = z 

t ha t   resu l t s   i n   t he   f l ow   equa t ion  

2 i  kM2 
+xoxo + +YOYO + +z z B +xo 

" + k2M2+ = 0 
0 0  

I n   t h e  new coordinate system the  equation  for  the  leading edge  becomes 

xoB = yo tan A 

114 



w 
1 1  

Y 2 
Def in ing a new angle, Al, such t h a t  t a n h l B  then  the  leading edge 

equation becomes  xo=yotanAl and the boundary condi t ions i n   t h e  new coordinate 
system are 

$ = O  f o r  xo<yotanAl on z=o 

= (Xtvxo)U(yo) f o r  xo>yotanhl on z = o  

where X = oH( l - i k i , c )  
v = OH i kB 

1 The f i r s t   d e r i v a t i v e  t e r m  i n  equation ( B 4 )  i s  then removed by de f i n ing  a new 
var iab le,  $, def ined as 

Inser t ion   o f   equat ion  (86) i n t o  (B4)  r e s u l t s   i n   t h e   t r a n s f o r m e d   d i f f e r e n t i a l  
equation 

2 

$xoxo + $YOYO + Jlzozo 
+ y )  $ = 0 

The transformed 

I $  = O  

boundary conditions  are  then  defined as 

xo<yotanAl  on z = o  

-ikM2xo/B 1% = (X+vxo)e  U(yo) fo r  xo>yotanhl 

I n  order  to  study  the  problem i n  t h e   v i c i n i t y  of  the  leading edge corner a l l  
coordinates  are  stretched such t h a t  
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I n  terms o f  the  stretched  coordinates  the  boundary  condi t ions become 

I J , = o  xo<yotanAl on zo=o 

-i kM2Exo/B 
U(yo) xo>yotanAl on  zo=o 

Expanding the  exponent ia l  and c o l l e c t i n g  terms of E~ the second boundary 
cond i   t i on   i s   t hen   de f i ned  as 

The v a r i a b l e  $ i s  a lso expanded i n  a ser ies  g iven as 

$ = $o + + $*E2 + (B11) 

and i n s e r t e d   i n   t h e   d i f f e r e n t i a l   e q u a t i o n  and boundary  conditions  terms o f  

l i k e  powers i n  E a re   co l lec ted  and define  boundary  value  problems f o r  which 
s o l u t i o n s   a r e   t o  be obtained whose sum will sat is fy   the   f low  cond i t ions   a t  

the  leading edge corner. 

(zeroth  order  problem) 

on zo=O xo<yo  tanh] 

on zo=O xo>yo  tanAl 

V2$, = 0 ( f i r s t   o r d e r   p r o b l  em) 

91 = o  on zo=o  xo<yo  tanhl 

= WY,) on z0=o  xo>yo  tanAl 
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second order problem) 

I $2 = o  on z=o; xo<yo  tanAl 

I$ = ( v  - 7) i kM2X xoU(yo) on z=o; xo>yo tanAl 

Solution of  the  zeroth  order boundary value problem results i n  an 
expression  that is  given by 

where the  coeff ic ient ,  C ,  can only be determined by a global  integration 
over the planform.  Since the function  contains a square  root and inverse 
square  root term that   are   avai lable  i n  the main l i f t i n g  surface  solution then 
this zeroth order solution will be ignored. 

Solution o f  the First Order Boundary Value Problem 

A r i g i d  rotation of  coordinates is  made such tha t  the coordinates  are 
parallel  and perpendicular  to the leading edge as shown i n  figure 49 . 

Figure 49: Rotated  Coordinate System 
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The new coordinates  are  defined  by 

X = X. COS Al - yo s i n  A1 

Y = x. s i n  A, + yo cos hl 

z = zo 

and the  o ld   coord inates  g iven i n  terms o f   t h e  new coordinates  are 

x. = x cos Al + y s i n  Al 

yo = - x s i n  hl + y cos hl 

zo = z 

The above transformat ion i s  a r i g i d   r o t a t i o n   w i t h o u t   s t r e t c h i n g  so t h a t  
the   o r thogona l i t y   o f   the  axes and scales  are  preserved. Thus the  transformed 

f i r s t  order boundary  value  problem i s   g i v e n  as 

$1 xx + $lyy + $lzz = 0 

$1 = 0; x<o on z=o 

A Fourier  t ransform i n  the y d i r e c t i o n   i s   a p p l i e d   t o  reduce  the  problem t o  a 
two dimensional  problem  with a parameter. The t rans formed  d i f fe ren t ia l  
equation becomes 
- 
q1 +T1 - s * q  = 0 (B19) 

xx 22 

Transformation o f   t h e  o f f  wing  boundary c o n d i t i o n   y i e l d s  
- 
$1 = 0 x<O on z=O 
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The second  boundary condi t ion i s  transformed  by 

W 

- 
$l - - &- e-isy U(y-xtanhl  )dy 

z (2.P -w 

(D on z=o 
xtan 

The convergence a t   t h e  upper limit i s  circumvented by considering s t o  be 
complex hav ing   hag(  s)<O. Then the boundary c o n d i t i o n   i s  

Fol lowing Landahl i n   t h e   c o n s t r u c t i o n   o f  a so lu t i on  o f  equation 
s o l u t i o n   i s  assumed t o  be o f   t h e  form 

2 

where O1 = tan-’  (5) and rl 2 = x *  + 22 

The quan t i t y  A i s  determined  by  having vl sa t i s f y   t he  boundary  con- 
d i   t i o n  on the   l i f t i ng   su r face   (equa t ion  (B20) ). Thus, the above expression” 
i s   d i f f e r e n t i a t e d   w i t h   r e s p e c t   t o  z by us ing  the  express ion  for   the  der ivat ive 
i n   p o l a r   f o r m  
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x -Islr l- is(x-xO)tanAl 

- A l s l  j e r% 
-W. 

The second integral   vanishes for z-to s ince e1=0 o r  T. The d e r i v a t i v e  
becomes 

3 s i n  el 
The a p p a r e n t   s i n g u l a r i t y   i s  removed by adding and subtract ing 
wi th in   t he   exp ress ion   t o   ob ta in  rl 

312 

a*l - [ [.- I s  I rl+i sx’tanA1 
lim - - - - lim 

z+ 0 z+o -w 

s i v  3 el -i sxtanAl 

3Z rl 3 /2  dx ] e 

x s i n  - e 3 
A dx’] e -i sxtanAl 

z-to 

Landahl has demonstrated t h a t   t h e  second in tegra l   van ishes   fo r  z+o. Since 

e140 f o r  x>o  and e l w  f o r  xeo, then  the limit as z+o o f  t h e   r i g h t  
hand side becomes 
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A -i sxtanhl  -x4[ I s  I+istanhl] - 1 1  dxO 
= + r e  

0 31 2 
X 0  

In tegra t ing   th is   express ion   by   par ts   y ie lds  

-isxtanAl [ [e-x[ 1s (+istanAl] 
- =+;e - 11. (x*j*la a t  

Z Z . 0  
0 

QD -x [Is I+istanAl] 
- 2 [ ls l+ is tanAl ] .$  e dx ’1 

0 X& 

then  the  expression f o r   t h e   d e r i v a t i v e   i s  

- i sxtanAl 
= - A (IT[ Isl+istanAl])’ e 

This  expression  for   the  der ivat ive must be equal t o   t h e  boundary cond i t ion  
equation (820) t h a t   r e s u l t s  i n  evaluat ing A as 

A = -  x 
4 i s 1 ~ ( 2 [  I s  I+istanhl])* 
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F i n a l l y  5, becomes 

-i sxtanAl X - Is l r l+ isx ' tanAl - - " A e  cos (>) dx' J e  ' i 1 ~ ( 2 [ ( s l + i s t a n A ~ l ) '  r,' 

Taking  the  inverse  transform  of  equation (B29) and interchanging  the  order ,of 
i n t e g r a t i o n   y i e l d s  

Now, w i t h  p = y + ( x '  - x)  tan  hl, the   inner   in tegra l  becomes 

The integrand  contains a non- integrable  s ingular i ty,  however, t h i s  i n t e g r a l  may 
be evaluated i f  the   s ingu la r i t y  i s  softened by f i r s t   t a k i n g  a d e r i v a t i v e   w i t h  
respec t   t o  p 

Then F ' ( p )  may be eva lua ted   fo r   the   l im i t ing  case o f  lim F ' ( p )  and 
ob ta in  Y-co 

where the  path of path of i n teg ra t i on  i s  along  the s(Rea1) ax is .  
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or 

00 iso-sr, m -i so-sr, 

Observing that l+itanAl = /ml eiAl = secAleiA1 then upon combining the 
expressions we obtain 

m (,ince J -as ds =g) 
0 
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N o w  F(p) may be obtained  by an i n teg ra t i on  o f  F ‘ (p )  as fo l lows:  

Since  the  lower limit, p,  i s  an a r b i t r a r y  limit then  value o f  . u  i s  
selected such tha t   t he  second term  vanishes;  that i s ,  we se lec t  p such 
t h a t  

now 

and 
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I 

Thus p i s   s e l e c t e d  such t h a t  p = -rl tan A1 and consequently F(p) i s  
given as 

and the  expression  for  $1 given i n  equation (830) may be p u t  i n  the form 
X 

o r  

and since Im(n= Im(x- iy)  - y - Im(x+iy)  then q1 becomes 

now replac ing p by p = y + ( x ’  -x )  tan Al 

ihl /2  
$1 - - -  - 

71 plcosAl+i  (ycosAl+(x‘-x)sinhl) 
-00 fi 

Now l e t  17 = y cosh, - x sin$ and $, becomes 

x cos (ol /2)  iA l  /2 
q1 - - - “ J  

a Im[e  ~r lcoshl+ix ’s inAl+in  dx’  
-m fi 1 
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The v a l u e   o f  $1 on z+o may  now be establ ished by no t i ng   t ha t  1 i m  rl = ] x 1  I 
and t h a t   t h e   i n t e g r a l   f r o m  -Q) t o  0 i s  equal t o  zero  since O1 = IT f o r  x',<o 

on z=o, thus  the  expression  for  JI1 on z= o becomes 

z-, 0 

X i A 1  12 

*1 IT fx'cosAl+ix'sinAl+iq  dx' 
0 I 

Rather  than  attempting t o   e v a l u a t e   t h i s   i n t e g r a l  i n  i t s  present  form  introduce 
a new func t ion  q1 such t h a t  

- p'cosAl+ix 's inAl+in 
q + i$l = - - IT dx 

0 F 
and note   tha t  $1 has the  same d e f i n i t i o n  as before i n   t h a t  i t  i s  equal t o   t h e  
imaginary  part of the   in tegra l .  

iAl/2 iAl -iA1/2 
Now with e = e   . e  

0 

The in teg ra l  may be evaluated  by  making a s u b s t i t u t i o n   o f   x '  = -r and 
integrat ing  the  expression by p a r t s   t o   y i e l d  

1 

-inl 
where  a = i q e  and n = y cos A, - x s i n  Al 
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The func t ion  JI, i s  the  Imaginary  par t   o f   the  equat ion and i s  given i n  
s t re tched  ro tated  coord inates and may be  expressed i n  the   o r i g ina l   s t re t ched  
coordinates  by  transforming back ou t   o f   the   ro ta ted   coord ina te  system  by 
using 

x = x. cos Al - yo s i n  Al 

yo = y cos Al - x s i n  Al = 17 

- 
IT (xocosAl-ylsinAl)(xo+iyo)cosAl 

1 

Now making a new d e f i n i t i o n  q = yo/xo and rep1  acing x. by  BE where x 
is   physical   coordinates,   the above equation becomes 

where B1 = tan hl 

Then may be  obtained by evaluating  the  imaginary  part  of  the above 
equa t i on 

- i A l  
i (1 - f+q) (1+ iq )  
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A f t e r  some  manf upulations  the  expression becomes 

Secondary 

The  second order boundary 

k2M2 V2$2 = - 6 2  vJ0 

q2 = 0; z = o  and 

where i kM2X 

X = OH(l  - ikFo)  

This  problem i s  separated  into 

k2M2 

Order Boundary Value  Problem 

Val ue problem may be  stated as 

xo<yo tan hl 

z=o, x. yo tan 1 

two p a r t s  by the  following  procedure 

$2 = 0 on 2'0; xo<yo tan Al 

12 = 0 on z=o; xo>yo tan Al 
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I J12 = 0 on z=o; xo<yo tan Al 

1 3 32 = c2 x. u (yo) on z= 0; xo>yo tan. Al 

Since i t  i s   i n d i c a t e d   i n   e q u a t i o n  (812) t h a t  $, conta ins  funct ions  that  
do no t   p rov ide   f o r  any  change i n  boundary condit ions  across  the  control  surface 
s ide edge then it fo l lows  tha t  $, i s  a regu la r   func t ion  and thus  the  solut ion 
o f   t h e  boundary  value  problem o f  equation (853) must a lso be  a regular   funct ion 
t h a t  will be obtained from the   g loba l   so lu t ion   por t ion  of the  solut ion  process. 

A solut ion,  qz ,  o f  equation (B54) i s  taken t o  be given as 

where B1 = tan A1 

The funct ion qp  sa t i s f i es   t he   d i f f e ren t i a l   equa t ion   s ince  $1 was obtained 
on that  basis.  Also, q2=o on zo=o f o r  xo<B1yo since ql=o f o r  

xo<B1 yo. and 

due t o   t h e   f a c t   t h a t  

The second order  solut ion,  $*, may be obtained  using a modif ied  form o f  
equation (848) t o   de f i ne  Q1 wi th in   the   in tegrand 
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To shorten the notation  let  

i Al 
Replacing  e cosAl by i+B1 and evaluating  the two integrals  results i n  
the  expression 

+ iy, [ 2xo+Yo(i-Bl> 
2 2 l o g  [-)- V O V J }  

Upon collecting  l ike terms the  expression becomes 

where vo = i n  
v1 = 
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Thus,  expressions for  the  solutions of the first and second order boundary 
value problems are now defined by equations (B48) and (B59) , and i t  only 
remains t o  obta in  the  pressure  coefficient i n  terms of these solutions. By 
definition,  the  pressure  coefficient C i s  given i n  physical coordinates 
x, Y by 

P 

where 4(x,y,o) obtained by the E expansion  process is given as 

Then 

Theref ore 

Now 3rl may be restated i n  stretched and scaled  coordinates as being 
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+ - i Y o  2 Log y T o + V - ] }  
- f"-- xo-~lyo  

Upon redefining * 

vo = q- 

v1 = { O T I Y .  
i Al 

e corA1 = i i + B ~  

and the expression given i n  physical  coordinates (2 ,Y)  is  obtained bY 

rep1 acing x. by p yo by E 

- 
X J!. and 8, by B to  yield 

where - = j z i &  
vO 

Equation (B65) along w i t h  its derivative w i t h  respect  to x may be inserted 
into  equation (863) t o  g ive  the  pressure  coefficient due to  the f i r s t  order 
sol u t i  on as 

- 



Im ([B+i tanA]To) + 

+ Im (1 
aB 

vo-vl 
e i kM2F/ B 

Co l lec t i ng  terms  and evaluat ing  the  imaginary  par ts   o f   the  equat ion  resul ts  
i n  the  pressure  coef f ic ient   g iven i n  physical  coordinates due t o   t h e   f i r s t  
order  solut ion  g iven as 

where B, = JB2+tan2A 

X = OH(1-ikZc) 

- 
x,y = physical  coordinates 

The pressure   coe f f i c ien t  due t o   t h e  second order  term may be obtained  by 
using  equation(B55)  equation (B63) equation (B65) and applying  the 
above procedure t o   y i e l d  
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where 

- v1 = d-g 

c 2 - v - -  - i kM2X 
B 

The sum o f  equations (B67) and (868) wi 11 provide  proper change i n  
boundary c o n d i t i o n s   a t   t h e   c o r n e r   o f  a leading edge control  surface. These 
expressions need t o  be modif ied such that   the  p lanform boundary condi t ions 
a r e   s a t i s f i e d   a t   t h e  edges of the  p lanform  whi le   mainta in ing  the  s t rength  o f  
the  s ingular i t ies   a long  the  s ide edges o f   the   con t ro l   sur face .  The funct ions 
t h a t   s a t i s f y  these  constraints  are  described i n   t h e  main  sect ion  of   the 
document fo l lowing  the  loading  funct ion developments o f  Landahl. 
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APPENDIX C 

A CAUTION REGARDING PLANFORMS WITH DISCONTINUOUS EDGES, AND A PROVISION 
FOR INCLUDING  EFFECTS OF AIRFOIL THICKNESS VIA LOCAL.LINEARIZATI0N 

Suggestions are  made f o r  modifyimg  analytical  procedures used i n  ob ta in ing  
loadings on discontinuous  planform shapes,  and f o r   n i o d i f y i n g   l i f t i n g   s u r f a c e  
boundary condi t ions G/V such that   the  phys ica l   f low  pressure  d is t r ibut ions 
are more readi ly   s imulated  by  the  theoret ica l   pressure  d is t r ibut ions.  

M o d i f i c a t i o n   o f  Planforms  Having  Discontinuous Shapes' 

A n a l y t i c a l   d i f f i c u l t i e s  may be  encountered i n  p red ic t ing   the  aerodynamic 
loadings on p lanforms  hav ing  analy t ic   d iscont inu i t ies  in   the  p lanform shape 
de f in i t i on .   F igu re  50 represents a typ ica l   analys is   p lanform where f i r s t  
d e r i v a t i v e   d i s c o n t i n u i t i e s   i n   t h e  shape d e f i n i t i o n   e x i s t  and may provide 
incons is ten t   resu l ts  i f  the  spanwise d i s t r i b u t i o n  of co l l oca t i on   s ta t i ons  
contain a cont ro l   po in t   loca ted   a t   o r   very  near  the  spanwise  discontinuity 
s ta t ion .  

Figure 50 .- Typical   Analysis  Conf igurat ion  wi th a Discontinuous Shape D e f i n i t i o n  - - 
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The mathematically  derived  downwash  sheets obtained from an evaluation of 
the  downwash integral wll1 exhibit  singularities whenever collocation 
stations are located at  the planform spanwise  discontinuity stations. The 
singularities are due to the over-simplified manner in which the pressure 
distributions are assumed to  exist over the planform. The assumed 
pressure functions are distrlbuted  continuously over  the surface in such a 
manner  that the planform is completely covered regardless of  the analytic 
continuity of  the planform definition. If the planform definition con- 
tains sharp breaks or dlscontinuities in its first  derivative definition, 
then the pressure distributions and resulting spanwise  loadings will also 
exhibit  discontinuities at the  same  spanwise stations. It  is the discon- 
tinuous  first  derivative of spanwise  loadings that cause the numerical 
problems and produce singularities in the predicted downwash sheets. The 
spanwise  loading  discontinuities may be removed by using a  suitable pres- 
sure distribution  that is analytically continuous in its spanwise direction. 
However, no such  distributions have been formulated nor used within the 
present program development  since it  is obvious that there  are  other means 
available for obtaining  reasonable results other than overemphasizing the 
effects of localized flow in regions of planform discontinuities. The 
problem of downwash  singularities may be circumvented by smoothing the 
planform discontinuities or by keeping the  spanwise  location of collocation 
stations well away from the troublesome regions. However, numerical prob- 
lems do exist and  the  analyst should be cognizant of  the potential problem 
and to  what extent that the downwash distributions may be distorted in the 
regions of planform discontinuities. 

. ,  

The extent of downwash distortion may be determined by evaluating the  down- 
wash integral equation for the steady flow case given the following form: 

In this example, f(0)  is taken to be the  spanwise pressure function 
corresponding to an ellipse, f(0) = i s 2  - q2 ; and g(5 ,O)  i s  the 
chordwise pressure function given as 
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Also, the plwform being evaluated is a de l ta  wing having a discontinuous 
planform de f in i t i on  a t  the center line. 

Performing the indicated  differentiation. with respect  to TI In equation (Cl) 
and retaining  only  the essential terms that  contribute  to the singularity 
problem results i n  the following expression: 

The "e) term has a f inite discontinuity a t  the planform center 1 ine 
having  equal b u t  opposite signs on e i ther  side of  the  center  line. 

To shorten  the  expression l e t   t he  chordwise integral be defined  as: 

And l e t  Ha(,,) be H(n) when the le f t  hand side  derivative of a g ( € * d  
used i n  equation (C3) ; a l s o   l e t  Hr(n) be H(n) o f  equation (C3) u s i n g  

the r i g h t  hand side  derivative o f  a,, 

Then the  shortened form of equation (C2) becomes: 

an 

a d t , d  

S 

-S 

Equation (C4) may  be evaluated by adding and subtracting  the  function 

S 

Y -n 
-S 0 

S S 

0 0 
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The second  and t h i r d   i n t e g r a l s   o f  (C5) are  evaluated  by  making a con-. 
t i n u o u s   e x t e n t i o n   o f   t h e   d e f i n i t i o n   o f  arl across  the  center l ine I 

t o   t h e   r i g h t  hand t i p   a t  r) = s. I 

The i n t e g r a l s  may be combined to  provide  the  expression 

S i n g u l a r i t i e s   a t  rl = y are removed f rom  the  in tegra l  and evaluated 
separately as shown by the   fo l low ing :  

S S 

-S - S  

S S 

S S 

The only  terms c o n t a i n i n g   s i n g u l a r i t i e s   ( w i t h   t h e   r e s t r i c t i o n   t h a t   t h e  
downwash s ta t ions   a re   con ta ined  in   the   in te rva l   -s -cyq  s )  are  the  terms 
having an in tegra l   form of 

S jA 
0 

Equation (C7)  may then be expressed as having  s ingular and non-singular 
terms that  take  the  form  of :  

a(x,y) = [ Hr(y) - H,(y) 1 l n l y l  + Regular Terms 

and the   l im i t i ng   va lue   o f   a (x , y )  tends t o   i n f i n i t y  as y-0. 



Thus, the downwash sheet will e x h i b i t   u n r e a l i s t i c a l l y   l a r g e  values o f  
downwashes whenever a downwash chord i s  placed  near  a  planform  disconti- 
n u i t y   s t a t i o n  and is due s o l e l y   t o   t h e  manner i n  which  the  pressure  load- 
ings  are assumed t o  e x i s t  on the  boundaries of   the  p lanform. 

There i s  an obv ious   so lu t ion   to   th is  problem  (see  reference 8 )  i n   t h a t  
t he   de r i va t f ve   o f   t he  spanwise  loadings may be made continuous  by  smoothing 
the  p lanform  d iscont inu i t ies.  An example o f  how smoothing of   p lanform  d is-  
con t inu i t ies   a f fec ts   the  downwash d i s t r i b u t i o n   i s  shown i n   f i g u r e  51.  

SECOND DERIVAT1VE 

TIC- CONTINUITY STATION 

;5s ' L Y \  

I - \  \ 

6 = 0.0 
2 0 -  

1 0  - 

I 

0 .2 .4 .6 

I I 
1 
X 

I 

Figure 51 .- Spanwise Downwash D is t r ibu t ion   Resu l t ing  from  Various Apex 
Smoothing  Values 
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The cl ipped delta planform shown .in f'igure 51  has been modified i n  the I 

region of the apex a t  the centerline t o  produce a continuous first deriva- 
tive def ini t ion of  the planform across the centerline. The method se- 
lected t o  smooth the shape definit ion is one o f  applying a function 
having a continuous f i r s t   de r fva t ive  that is zero a t  the centerline and , 

is also continuous i n  the second der iva t ive   a t  the spanwise matching s ta-  
tion. This partic,ular smoothing function provides derivative  continuity 
w i t h  the leas t   d i s tor t ion  i n  planform definit ion.  Downwash values ob- 
tained a t  spanwise s ta t ions along the 50% chordline  are shown i n  the 
lower par t  of figure 51 . The  downwash d is t r ibu t ion  near the planform 
centerline does become singu'lar  for  the pointed apex case. However, the 
downwashes take on  more r ea l i s t i c  values whenever the apex discontinuity 
i s  removed  by applying a small amount of smoothing. 

The spanwise dis tor t ion i n  downwash sheet is only  slightly  affected by 
redefining the planform  shape. However, caution  should be exercised i n  
applying  large amounts o f  smoothing since the redefined shape may provide 
a poor approximation o f  the original planform shape. 

The above discussion has been presented to   ident i fy  a potential problem 
tha t  may ar i se  i n  predicting  the  loadings on discontinuous planforms and 
t o  suggest a method to   a l lev ia te   the  problem, The suggested smoothing 
technique is no t  available w i t h i n  the present computer program, however, 
an al ternate  method i s  suggested such that  reasonable  results may be ob- 
tained  without redefining the planform  shape. 

An al ternate  method suggested by other  authors is  one of applying  engineer- 
i n g  judgement to  the placement of spanwise collocation  stations i n  regions 
of planform discontinuities.  The  downwash distribution shown i n  figure 51 
indicates  that  the  distributions  are only s l ight ly   affected  a t  small dis- 
tances away from the discontinuity  station. The  amount of distortion  will 
be the  greatest  near  the  centerline of a highly swept planform since this is  
the  location where the  largest  difference i n  the spanwise l o a d i n g  derivative 
exis ts .  Planforms  having leading and t r a i l i n g  edges defined by a combination 
of s t ra ight   l ine  segments for  which differences i n  spanwise slopes  are small 
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! J w i \ l  ,produce  even  small.er d i s t o r t i o n s   i n   t h e  downwash d e s c r i p t i o n   t h a n   i s  
observed fo r   ihe   cen ter l ines   s ta t ion .  Consequently, i t  i s  suggested t h a t  
the  placement o f   t h e  spanwise co l l oca t i on   s ta t i ons  (downwash chords) i s  
such tha t   the   s ta t ions   a re   loca ted   a t   leas t  a small  distance away from any 
p lanform  d iscont inu i ty   s ta t ion.  

Although appl icat ion  o f   p lanform smoothing o r   p o s i t i o n i n g   o f   c o l l o c a t i o n  
s ta t ions  may appear t o  be an a r t i f i c i a l  method t o  bypass the  source o f  the  
problem, these methods will provide  reasonable  resul ts  for   the aerodynamic 
loadings  without  being  overly encumbered by loca l i zed   f low  cond i t ions   tha t  
c o n t i b u t e   o n l y   i n  a m a l 1  way t o   f i n a l   l o a d   d e f i n i t i o n s .  

Suggested Mod i f i ca t ion   o f  Boundary Conditions i/V 

From  an operational  standpoint, i t  appears t h a t  i f  a l o c a l   l i n e a r i z a t i o n   i s  
used, t h a t  i s  i f  the   l inear ized  boundary condi t ions i / V  are   mod i f ied   to   inc lude 
loca l   ve loc i t i es  due to   a i r f o i l   t h i ckness   t he   resu l t i ng   t heo re t i ca l   p ressu re  
d i s t r i b u t i o n s  will simulate  the  physical  f low  condit ions more accurately. 
L i f t ing   sur face   theory   so lu t ions   us ing  assumed mode-kernel func t ion  approach 
usual ly   prov ide  resul ts   that   corre la te w e l l  with  experimental  results. An 
example o f  the  corre la t ion  o f   theoret ica l   -exper imenta l   resul ts   is   presented 
for  the  analysis  p lanform shown i n   f i g u r e  52.  

"" 

I" 52.7- 
-7 ROWS OF PRESSURE ORIFICES 

Q25 CHORD OF NACA 
/ I 6 4 A W  SECTIONS 

SECTION - 5 
m I 

NACA 64AOlO 

Figure 52 .- Experimental  Planform of NACA RM A51G31 (dimensions i n  cm) 
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Chordwise pressure  distributions were obtained a t  seven spanwise locations i '  

as  jndicated i n  the figure. The comparisons of  theoretical-experimental ,.; 

resu l t s   a re  shown i n  figure 53 fo r  the pressure chord Jocated a t  y/s = .831 
for  M = 0.80 and a = 4'. 

I 

1.2 

1.0 

AcP 
.8 

.6 
i 

.4 

.2 

0 

0 z EXPERIMENT (NACA RM A51G31) 

- ZERO THICKNESS BOUNDARY CONDITIONS 

c I I I 

0 .2 .4 .6 .8 1 .O x /€ 
Figure 53 .- Experimental and Zero Thickness  Theoretical  Pressure  Distribution 

a t  y/s = 0.831, M = 0.80, a = 4" 

The result ing  theoretical  pressure dis t r ibut ton was obtained using the 
standard 1 inearized boundary conditions  applicable for zero  thickness 1 ift- 
i n g  surfaces. I t  appears tkat a reas.onable correlation i s  obtained on the 
average i n  tha t  the theoretical d i s t r i b u t i o n  does approximate  the  experi- 
mental values i n  an average sense over the length of  the s t r eamise  chord. 
Theoretical  pressures  forward o f  the midchord are  smaller  than  experimental 
values and are  greater  than  experimental  values  for  stations  aft o f  the 
midchord. 
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The analysis was revised us ing  a  modification on the l if t ing surface boundary 
conditions such t h a t  the  local  velocity due t o  symnetrical thickness distri- 
button is used instead o f  applying the uniform velocity distribution of a 
zero thickness l if t ing surface. 

That i s ,  the boundary condition of the  integral equation- was obtained from 
the  definition 

where z.represents the displacement of the surface and is a function of time(t). 
J 

az 
ax  - the  slope of the  surface a t  (x,y) . 

ax is usually taken t o  be equal t o  the remote velocity V , and for a zero 
thickness airfoil  section this may  be correct. However, physical experiments 
are conducted on finite thickness airfoil  sections h a v i n g  local  velocities 
t h a t  are no t  uniform  over the chord length. 

a t  

Consequently, the term should represent  the  local flow velocity VLocal a t  
collocation  stations i n  making a comparison  between theoretical and real 
flow results. 

a t  

The modified boundary conditions  applicable t o  f ini te  thickness airfoil sec- 
tions are then defined as: 

vLocal i s  defined as being the  steady streamwise velocity d i s t r i b u t i o n  t h a t  
differs from V due t o  thickness effects only, and may  be obtained from ex- 
perimental results o r  by using the  theoretical distributions of reference 17. 

Theoretical  results shown i n  figure 54 represent analyses using zero thick- 
ness and finite thickness boundary conditions and it is evident that i n  
this case more accurate  simulation of the physical flow results  are obtained 
using local boundary conditions that incorporate finite thickness effects. 



Theoret ica l   pressure  d is t r ibut ions forward o f  the midchord s t a t i o n  approach 

the  experimental  values I n  a b e t t e r  fashfon than do the   resu l ts   us ing  zero ~ , 

thickness  boundary  conditions. Also, t)is t h e o r e t i c a l   d i s t r i b u t i o n s  near 
t h e   t r a i l i n g  edge pred fc t   the  change tn sign tn pressures  as  indtcated I n  
the  experimental  resul t s  

*CP 

0 + EXPERIMENT (NACA Rn A51631 ) 

- ZERO THICKNESS BOUNDARY COHDITIONS 

-0- FINITE THICKNESS BOUNDARY CONDITIONS 

*8 t a 
0 + EXPERIMENT (NACA Rn A51631 ) 

- ZERO THICKNESS BOUNDARY COHDITIONS 

-0- FINITE THICKNESS BOUNDARY CONDITIONS 

Figure 54 .- Comparison o f  Pressure  Distr ibut ions  Predicted by  Zero  Thickness 
and F i n i t e  Thickness  Boundary  Conditions a t  a Semi-span Sta t ion  
y/s = 0.831, f o r  M = 0.80 and a = 4 O  

Although no la rge  changes appear i n  the   d is t r ibu t ion   us ing   the   mod i f ied  
boundary  conditions, i t  does appear that   the  phys ica l  f l o w  condit ions  are more 

accura te ly   s imu la ted   a t   leas t   fo r   th is   s teady  flow test   conf igurat ion.  

V a l i d i t y   o f   a p p l y i n g   l o c a l   l i n e a r i z a t i o n  o f  boundary condi t ions  wi th in  the 
unsteady  case may be questioned on the  basis  that   the  kernel   funct ion has not 

been  changed t o   r e f l e c t   t h e   l o c a l   l i n e a r i z a t i o n   e f f e c t s .  
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However, a  numerical  experiment has  been accomplished to   evaluate  the 

effects of- l o c a l   l i n e a r i z a t i o n  on the  unsteady  pressure  d istr ibut ions  using  the 

tes t   con f i gu ra t i on  shown i n   f i g u r e  55. 
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Figure 55 - Experimental  Planform o f  Side-by-Side  Control  Surface  Arrangement 
Showing  Spanwise Location o f  Pressure  Measuring  Stations. 

Results o f   t h i s   i n v e s t i g a t i o n   a r e  shown i n  f i g u r e  56 for   the  in-phase  par t  

o f   t he   resu l t i ng   p ressu re   d i s t r i bu t i ons  and the  out-of-phase  part i s  presented 

i n   f i g u r e  57. 

The theoret ica l   pressure  d is t r ibut ions  o f   the  in-phase  par t  approach the 

experimental  values i n  a  bet ter   fash ion  than do the  resul ts  using  zero  th ickness 
boundary  conditions. The out-of-phase  theoretical  distr ibutions  remain  almost 
invar iant   over  the  control   surface and are changed only  by  very  small amounts 
forward o f   t h e  hinge1  ine. 



0 EXPERIMENT (AVA FB 7025) 

--- THEORY (ZERO THICKNESS 
BOUNDARY CONDITION) I 

THEORY (FINITE THICKNESS 
BOUNDARY CONDITION) 

y/s = 0.28 

0 

.2 .4 .6 
x/c 

.8 1 .o 

Figure 56 - In-Phase Pressure  Distribution  for  Both Flaps Oscillating with 
the  Same  Phase and Amp1 itude. b f =  0.82' ,k= 0.372 , M = 0.0 
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Figure 57 - Out-of-Phase  Pressure  Distribution for Both Flaps Oscillating 

146 with the  Same  Phase and  Amplitude. 6f= 0.82O, k= 0.372, M= 0.0 



It should be n o t e d   t h a t   t h e   v a l i d i t y   o f   i n c l u d i n g   l o c  a1 l i n e a r i z a t i o n  
e f fec ts   w i th in   t he  boundary condi t ions can no t  be general ized on the  basis o f  
t h i s   s i n g l e  example. 

,However, i t  appears that   the  phys ica l   f low  condi t ions may be more 
accurately  simulated and may cont r ibu te   s ign i f i can t ly   to   the   success fu l   des ign  
o f  energy  absorbing S t a b i l i t y  Augmentation Systems prov ided  that  good cor re la -  
t i o n  between experimental and theo re t i ca l   resu l t s  can be establ ished  over  the 
frequency  range o f   i n t e r e s t .  

A program op t ion   i s   ava i l ab le   f o r   mod i f y ing   t he  boundary condi t ions 
w i th in   the   ana lys is  and the  data  format   a long  wi th   l imi ta t ions  are  g iven  in  
reference 4. 
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