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PREDICTION OF UNSTEADY AERODYNAMIC LOADINGS CAUSED BY LEADING
EDGE AND TRAILING EDGE CONTROL SURFACE MOTIONS IN SUBSONIC
COMPRESSIBLE FLOW-~-ANALYSIS AND RESULTS

By

W. S. ROWE, M. C. REDMAN
F. E. EHLERS and J. D. SEBASTIAN
Boeing Commercial Airplane Company

SUMMARY

A theoretical analysis and computer program has been developed for the
prediction of unsteady 1ifting surface loadings caused by motions of leading
edge and trailing edge control surfaces having sealed gaps. The final form
of the downwash integral equation has been formulated by isolating the singu-
larities from the non-singular terms and using a preferred solution process
to remove and evaluate the downwash discontinuities in a systematic manner.
Comparisons of theoretical and experimental pressure data are made for several
control surface configurations. The comparisons indicate that reasonably
accurate theoretical pressure distributions and generalized forces may be ob-
tained for a wide variety of control surface configurations.

INTRODUCTION

Historically, much effort has been expended to adapt conventional oscil-
lating Tifting-surface solution techniques to wings with control surfaces.
Extensive use has been made of the reverse flow theorem (reference 1) to con-
struct an analytical upwash function that is used in reverse flow to produce
"equivalent" generalized forces. The generated upwash function is obtained
by the expedient of smoothing over, in one way or another, the slope discon-
tinuities and corresponding singularities within the pressure functions. The
"equivalent" upwash function does not match the control surface slope accur-
ately at all points, but does produce reasonable "indirect" generalized forces.
The usefulness of this method deteriorates when the "direct" hinge-moment term
is to be determined.



The work of reference 2 is one of the few subsonic methods developed
to determine the 'direct' surface loadings using pressure terms that are
capable of correctly representing the known singularity functions around
the boundaries of the control surface. However, it was found that solu-
tions obtained from the method of reference 2-were highly sensitive to the
relative location and number of control point collocation stations used in
the analysis. The sensitivity may be attributed to the particu]ér solution
process being applied that assumes that discontinuous downwash distributions
may be approximated by a linear combination of polynomial represented down-
wash sheets that satisfy the boundary conditions at a select set of control
points. - Changing the control point locations by relatively small amounts
results in large changes in the unsteady loadings,consequently, the method
requires calculation of downwashes at many stations and seeking solutions
in a least-squares-error sense.

Solution sensitivity remained until pressure distributions were de-
veloped (reference 3) that identify the functional distribution and singu-
larity strengths required to produce identical mathematical downwash dis-
continuities contained in the kinematic distribution. A preferred solu-
tion process was developed by subtracting the discontinuous mathematical
downwash distribution from the discontinuous kinematic distribution re-
sulting in smooth downwash distribution for which standard 1ifting-surface
solutions could be applied. The resulting loadings would then be relatively
insensitive to .the locations and number of control points used in the
analysis.

The present work represents an extension of the analytical methods
suggested in reference 3 to provide a capability of numerically predicting
the-unsteady loadings caused by control surface motions that is relatively
insensitive to locations of collocation stations on the surface. Documen-
tation of the computer program design, usage, and limitations is provided

in reference 4.
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P, [Force/area]
P, [Force/area]

AP [Force/area]

SYMBOLS

A1l quantities are dimensionless except as indicated.

Unknown coefficient of assumed pressure modes, equation 69

Local semichord

Reference length

Local chord length nondimensional with respect to b0

Variable used in spanwise pressure modification function,
equation 49

Spanwise pressure difference distribution, equations 56
and 69

Chordwise pressure difference distribution, equations 56
and 65

Mode shape of mode j (see equation 5 for dimensions)

V1

Kernel function, equation 6

Reduced frequency = E;—

Index variable, equation 73

Mach number

Number of downwash stations on a downwash chord
Number of downwash chords on semispan

Index variable, equation 69

Pressure on lower surface

Pressure on upper surface

Pressure difference, PPy (positive upward)



APj[KForce/area)/unit qj] Surface pressure difference in mode j

%

S
0}

S [length]

[1ength/time]

x|

x

Generalized coordinate amp]itﬁde for mode j

Generalized %g}ces (see equation 77 for dimensions)

Sectional generalized forces (see equation 76 for
dimensions)

\{XOZ + Bzyoz

Semispan

Nondimensional semispan, S/b0

Free stream velocity

Kinematic angle of attack or nondimensional normalwash
W

V .

wj/qje1wt

Coordinates nondimensional with respect to b0

Local chordwise coordinate (x - xm)/(b/bo)

Nondimensional coordinate of the mid-chord line

Nondimensional coordinate of the leading edge

Nondimensional coordinate of the trailing edge

X - &

Streamwise coordinate of hingeline at side edge of
control surface

Streamwise coordinate of planform leading edge at side
edge of control surface

Local coordinate for full chord control surface,

equation 46

Local coordinate for trailing edge control surface,
equation 42
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A, [radian]
A, [radian]
%

EsNs L

oy (n) [radian]

©

o+

€

[mass/1ength3]
[time]
[1/time]

yY-n /
Spanwise coordinate of control surface side edge
Surface deflection (see equation 4 for dimensions)
VI-M2
2 2
\[é + tan A

\{ 2 2
g + tan A2

Non-dimensional pressure difference between Tower and

upper surfaces (P, - P )/( % pV2)

Sweep angle of the control surface hingeline, positive
swept back

Sweep angle of leading edge, positive swept back on right
hand side

Hingeline coordinate at span station n

Dummy variables for (x,y.z)

Rotation angle of control surface hingeline at (n),
measured in the plane perpendicular to the y-axis and
positive trailing edge up

Multiplication symbol

Density of the fluid
Time
Circular frequency of oscillation

Chordwise angular coordinate, equation 69

Spanwise angular coordinate, equation 69



ANALYTICAL FORMULATION
The Integral Equation and Its Elements

This report describes the procedures used in calculating generalized
aerodynamic forces existing on a 1ifting surface caused by motions of leading
edge or trailing edge control surfaces in subsonic flow. The analysis is
applicable to planform configurations having full span or multiple partial
span control surfaces located anywhere along the leading or trailing edge of
the planform.

The analysis coordinate system is defined in figure 1 for a typical
trailing edge and/or leading edge control surface configuration:

Figure 1 - Coordinate System Definition



Solutions are obtained by evaluating the downwash-pressure integral
equation that has been derived from the 1inearized potential equation (1).

1 ? s 12
V2¢(x,y.2st) - [v + ] ¢(x.y,z,t) =0 (1)
_ a2 ax ot
The downwash-pressure integral equation derived in reference 5 provides
the basis for the analytical formulations used in developing numerical methods
for predicting unsteady loadings on 1ifting surfaces.

The general form of the integral equation derived in reference 5 and
used throughout this discussion is given by the expression

s . 1 d(b~£) d(b
S [ f #2(eam) Kixgayom) dlbge) dlbgn) 2)
surnface
where
w

—3  represents the kinematic downwash caused by motions of the 1ifting
v surface

aAP(g,n) represents the pressure difference between the upper and lower
surface and is the only unknown in the equation

K(x,E,y,n) represents the kernel function that defines the normalwash
at x,y due to a pulsating pressure doublet at &.n,

Solutions of the integral equation are obtained by assuming that the
1ifting surface deflection shape,ZS , may be represented by a finite sum of
discrete mode shapes that are deflecting in a sinusoidal manner. That is,
the deflection shape is assumed to be represented by

= iwt
ZS Z Hj(xs.Y) qj e (3)
J
where Zs has dimensions of length and is a function of time.

Hj(x,y) is the deflection shape of the jth mode

Q; s the generalized coordinate defining how much of the jth mode is
contained in Zg,



The dimension of the product Hy(x,y)q; is in units of length. That is,
if Hj(x.y) has a dimension of length, then qj is non-dimensional, or if
Hj(x.y) is non-dimensional, then ay has units of length.

The kinematic downwash term of equation (2) is developed from the surface
motion definition and is given as

W M (x,y)  dwHi(x,y)
v ;[‘(‘1) . ]Jei“’t

—:E‘ ; (_Wi)qj e'lwt

4
" (4)
The total pressure difference between upper and Tower surfaces is also
dependent upon the modal displacement and is given as

AP = PL - Pu

jut
aP = EE(APj)qj e (4a)
J

. a(aP) .
where APj > ag (i.e., APj is per unit q.)
The final form of the downwash integral equation is obtained by

inserting the expressions for the kinematic downwash and pressure difference
into equation (2) and removing the qjeimt term from both sides of the
equation that results in the expression

_ [ 9 Hj_ + 1ij] _
a(box) v 41rpV2

S f #85tEm) Kixsgaysn) dibge) dlbgn)

sunface ()




The pressure distribution APj(E,n) is the only unknown function within
the integral equation and its dimensionality is established by noting that

the product of K(x.g.y,n)d(boa)d(bon) is non-dimensional and (1/4#pV2) has
dimensional units of (1/(Force/area)) which requires that the dimensions of
APj(g,n) is equal to the product of (Force/Area) times the dimensions of the

kinematic downwash term.

That s, if Hj(x,y) is dimensional, then the kinematic downwash is non-
dimensional and results in having AP (g,n) take on dimensions of (Force/Area).
However, if H (x,y) is non- d1mensiona1 then the kinematic downwash has
dimensions of (1/1ength) which results in having dimensions of AP (g,n)
defined as (Force/Area)/length .

The subscript (j) is omitted in the remaining sections, up to the
section on generalized forces, with the understanding that the pressure terms
being determined are those terms necessary to satisfy the jth mode shape
boundary conditions.

The K(x-&,y-n,M,k) term of equation (2) represents the kernel function
of the integral equation that describes the surface normalwash at (x,y) due
to a pulsating pressure doublet located at (£,n). The kernel function is
defined as

LW X-£ iw 2402 24022 &

-1—()(-&) 2 exXpPiss ()\'M A8 (.Y'n) +B“z )

K(x-E,,Y'T],M-k) =e v im gz VBZ [ 1% ] dx
20 7 J [12+62(y-n)2+p222] "

(6)

Reduction of equation (6) into a form easily evaluated by routine
numerical procedures has been accomplished by Watkins, Runyan, and Woolston
(reference 6) and presented in non-dimensional form by considering the vari-
able as being referenced to some chosen length (bO) and introducing the
reduced frequency parameter k = bow/v the function becomes
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X . . . . _
= & N T I _
= bozyoz[ klyol[K]lkyolﬂz (141 kvgl-Ly Ky, 1)

K(X'E!.Y"T]-Msk)
h 1
-4 f[’f/(1+-r-2)/2] exp (ik|y,|) dr]
) _

2,02, 2\%, ik _ 2,02y 2%
Xo/ (X" +8%¥,°) exp(gz [Xo M(x,*+8%y,°) ])] (7)
where
- _ 2,02y 2V% 2
b= [xgMix, 2482y, 2) %] /8%y,
Singularities contained in equation (7) have been identified and are

isolated in the following form

K(xsE,y5n) = K ((x,€,¥,n) + K (X,€,y5n) (8)

where Kns(x,g,y,n) is the non-singular part of the kernel function.

The singular part is identified as

-ikx
e
= 1 2 2 . 2402, 2\%
Ks(x,ay,n) 'ji;r—f [ yo []+x /(x +g2 Yo ) ] + 1k/(x0 +8 Yo )
_ k2 2402, 2)%_ [ 2
2 I‘e"-“xo +8 y0)2x0| 282 [X /(X +8.Y ) M]} (9)

This expression contains the dipole, inverse square root, and logarithmic
singularities identified in reference (6). The last term of equation (9) is
not singular. However, it is included since special means are required in



evaluating the downwashes in regions near the downwash chord that are produced
by this term.

Insertion of the above definitions into the downwash integral equation
results in the following expression that is to be evaluated over the surface
to satisfy the boundary condtions.

4mpV? ':,—' = ffAP(E,n) Kns (XsE¥51) d(byg)d(bgn)
-ijP(E,n) e 1kXg ),]7 [1+x0/(x02+62y02)"’]d£dn
+ ik ff AP(E,n) e-“(x(y(xozﬂﬁ".yoz),/2 dgdn
- -zk-z ff AP(E,n) e-ikx° 1’-nl(x02+f52y°2)1/2 - x| didn
K I e N [xo/ (xo2+829(2)* - M] dean (10)

The first integral represents the contribution to the downwash at (x,y)
due to the non-singular part of the kernel function. The general shape of
Kns(x,a,y,n) is usually quite smooth fggklow Mach numbers and is due to the
strong sinusoidal characteristic of e *0 in the expression. However, the
chordwise characteristics change quite rapidly for Mach numbers greag?r\than
M = 0.85 as is demonstrated in figure 2 that represents the chordwise variation
in the imaginary part of Kns(x,g.y.n) with Mach number. The (x-£) coordi-
nate of figure 2 represents the chordwise difference between the pulse sending
point located at (&,n) and the downwash station (x,y).

e

n
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Since the functional distributions of Kns are quite different forward
and aft of the downwash station the chordwise integration interval is sub-
divided into two intervals XgSE<X and xsgsxt to provide an accurate
evaluation of the chordwise integral.

M =0.96

Figure 2 — Chordwise Variation of Kns(l) as a Function of
Mach Number for y-n=0.05, k=0.7854

The second, third, and fourth integrals of equations represent the
downwash contributions due to the dipole, inverse square root, and
logarithmic singularity terms respectively. The last integral does not
contain a singularity in the spanwise direction, however, special procedures
are required to evaluate its downwash contribution since a finite
discontinuity exist for values of n-oy.



Evaluation of the Dipole Term

The downwash contribution due to the dipole term is evaluated using the
method suggested by Hsu (reference 7). The dipole integral of equation (10)
is given as

f f AP(E,n)e ikxo-(—91—“?-[H(X-E)/((X-E)z’fﬁz()'-n)2)1/’]d€dn (1)

The downwash contribution due to the dipole term is determined by
considering the normalwash at a point (X,y,€) that is located just off
the surface shown in figure 3.

(X,_Y ’C)

(g,n,0)

P S
I-‘—— ——l(x,yao)y

Figure 3 — Coordinate System Used in the Kernel Function Derivation

The kernel function describing the normalwash at (x,y,e) due to a
pressure pulse at (g,n,0) is given by

-ikx. [, oE 3%E, 3E |
- %ol 1 °0 21 d)
K(X5&5Y5n) e [Y‘ 3r + sin?y (37-2 r or ] (12)

13



h

— kA [ 2,,2V"%
where E, = f e (r2+a2) = da

-00

h = (xo-MR)/BZ; R = (x02+82r2)%; Xg = X-&

The dipole portion of the kernel is

-ikx
kP =4+ O %7 (1+x5/R) (-1 + 2 sin®y)

Using the geometric properties of figure 3 that define

2 = p 242, = = ven- : - € - 2402, 2\%
r o +e?; rg =Yg = ¥y sin Y= R (x0 +8 "o )
The dipole portion then takes on the definition
-jkx. (r 2'82)
kP-_-¢ 0 _0 (14xy/R +o(e=)) (13)

(r 2+ez)2

where the terms represented by 0(e?)+0 as €-0.
The normalwash at (x,y,0) 1is obtained by a limiting process allowing

€ ~0 after the normalwash integral has been evaluated as indicated by the
following:

-ik
WP (x,y,0) = 1im - —-Q—s2 n2)% f ——(5-—'1)—e x°[1+x /Ryldgdn  (14)
erg -5 Yp'tet)?

Following the development of reference 7, let G(x,y,n) be the chord-
wise integral

14



Xt -ikx
G(oyan) = [© RGN 0 (1 py g

(s2-n2)*

(15)

and as n*y this integral becomes

1im G(x,y,n) = G(X,.Y..Y)
nry

One of the singularities is then subtracted from equation (14) that
results in the expression

de(X.y.o)=h'm[ [ g Y0 oy Iotran)-eran]

24,2
exgl s = (yg'te )*

(yo -e?)

= G(x,y,y)
XsYsY f (yoz+€2)2

(s2-n2)* dn ] (16)
The finite part of the second integral is

S
(y,2+e?)
im- [ 0 —— (s2n®) ¥ dn = n
(y.2+e?)
E->Q -S 0

The first integral in equation (16) is also singular. However, it may
be evaluated using Cauchy integrals provided that the term

GX,, -GX,,
Y - n

exists in the 1imit as n2y and takes on a definition of the first derivative
of G(x,y,n) with respect to n.

15
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The need of applying Cauchy integral procedures to equation (16) may be
circumvented by subtracting an additional singularity.

Defining
H(x,y,n) = (s?-n?) LEKaYan) = SlX.Y, (17)
and let
H(x,y,y) = 1im H(x,y,n)
n>y
= - (52ay2) S_
(s2-y*) 57 [80xysm)] oy
then
S
(¥q2-€%) [H(x,y,n) - H(x.y.y)]
—de(x’y,o) = ]im {_ f yo 02 - 5 2] - 1/2 H X’ ,ny - TH] X 3 dn
esg b Jg o (yy*te®) (s*-n?)
S
(v Z-€?)
- H(X,y,Yy) ‘['yo 0 3 1 + dn }+ TG(x,y,y) (18)
S (ygtre?) (s*-n?)”

The second integral limits out to zero as e+0 and equation (18) takes
on the integral form of

S
=dp - 1 2__2y LG(X.y,n)~G{x,y,¥)] _ gs?-zzza'gx,z,z;}
W (x,y,0) ————————;-{(s ) = d
| fs ()% (y-n)? y=n "
+ 1 G(X,Y,Y) (19)

It should be noted that, as e+y, the integrand of equation (19) tends
to take on the definition of a second derivative of G(x,y,n) with respect
to n.



However, the second derivative does not exist since the integrand is singular
at the downwash chord n = y. An example of this singular characteristic when
n-»=y 1is shown in figure 4 which represents a plot of the spanwise integrand
of equation (19) applied to the analysis planform shown in the sketch.

Downwash station

I(y,n) \/ S

I
| 10.]-
xY
I v/s, 0:5 1.0
-1!0 ~0.5 N ; |
| |
' |
' |
-10.}- l |
l
| |
-20.} | |

Figure 4 — Spanwise Variation of the Integrand of Equation (19)
Displaying the Singularity at the Downwash Chord.

In the following section, the singularity just described is identified as
being logarithmic in its character and numerical evaluation of equation (19)
will be accomplished using logarithmic quadrature integration functions. Also,
the following section contains a description of how the spanwise integrand may
be modified to provide a non-singular distribution that may be readily
evaluated by Legendre-Gauss integration quadrature functions.

17
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IDENTIFICATION OF SPANWISE SINGULARITIES

The spanwise singularity contained within the integrand of the dipole
downwash term was first identified by Multhopp (reference 8) in the develop-
ment of the steady state 1ifting surface solution. The technique developed
by Multhopp has been extended by Laschka (reference 9) to make it applicable
for use in non-steady lifting surface solutions.

The functional expression of the additional singularity contained within
the dipole downwash term may be obtained by developing a Taylor series ex-
pansion of AP(g,n)'1kx0 about the downwash station and performing the
resulting chordwise integration. That is, let AP(E;,n)e'ikxo be approximated
by spanwise-chordwise Taylor series given by

-ikx

-ik
p(emde 0= aP(xy) + (ney) [op(ean) "]
n 2=y
=X

o

-ikx -ikx

0]+ (ny) 2 Ep(g,rwe

on
g=x

-J+ ces (20)

The singularity in the spanwise integrand is identified by inserting

+ (E-X)[%g [Ap(s,y)e

nn
><'~<|_9.J

n
£

equation (20) into the dipole chordwise integral of equation (10) and
performing the indicated integration that results in the spanwise integral

given as

S .

-1kx -ikx

dp _ _ (1] 3_ *% oy 92 0
I fyOZ [BE[AP(E:.Y)e ] + (n .y) agan[AP(gsn)e X

-S E=X n:y

E=X
2
[[8 vgremtygt] + Seaslar] an @1

Thus, the additional singularity is identified as being logarithmic in
character which is amenable to integration by use of logarithmic integration
quadrature functions.



The third integrals of equation (10) also contain a spanwise singularity
that is proportional to £n8%(y-n)2. The singularity is identified by insert-
ing the Taylor series expansion of equation (20) into the third downwash term
and performing the chordwise integration that results in a spanwise integral
given as

S -ikx
18 = gk [ [AP(x,y)+(n-y) %ﬁ[Ap(g,n)e O:U [1tnrsz(y-n)2 + $§?1‘l‘]la”]dn (22)
-S E=X
n=y

The fourth integral of equation (10) has a spanwise singularity that may
be identified by redefining the logarithmic part of the kernel function to have
the following form for E<x

Zn[((x-a)“sz(y-n)z),% - (x-‘é)] = ng*(y-n)? - fin[((x-a)2+82()l-r1)2)1/2 * (x-E)]

Insertion of this expression into the chordwise integral results in the
(4)

equation for I of
, S X -ikx
-S

Xq

Once the singularities have been identified they may be subtracted out
of the integrand and analytically evaluated outside of the integral.

Figure 5 shows the very smooth spanwise distributions of the integrand
I(y,n) obtained for the dipole term by subtracting out the identifiable
singularities of equation (21). Removal of the singularities allows the use
of Legendre-Gauss quadrature formulas to evaluate the spanwise integral using
only a very small number of quadrature stations. As in any singularity sub-
traction process, localized gradients may appear that may require additional
subdivision of the integration interval to accurately evaluate the integral.
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It should be noted that there is a slope discontinuity yet existing at
the downwash station and this may be smoothed by subtracting additional terms
of the Taylor series expansion.

I(y,n) Downwash station

v

-y

y/s 0.5

, ! i-'T/S
e 0.5 N | \LU/

-10.-

Figure 5 — Spanwise Variation of Integrand of Equation (19) with Singularities
of Equation (12) Removed from the Integrand

As a consequence of the above there are several options open to the
analyst in evaluating the spanwise portions of the downwash integral and
are:

(1) ignore the logarithmic singularity since it is of relatively low

order,

(2) subtract the singularities out of the expression and analytically

evaluate their downwash contribution, and

(3) apply numerical integration quadrature functions that can evaluate

the logarithmic term at the downwash chord.



Numerical investigations have been performed to determine the validity
in using any one of the three integration options within the control surface
program. The analysis planform shown in figure 6 is a rectangular wing having
a full span flap deflected in steady flow. The deflection shape and step
function downwash distribution are also displayed to show the discontinuity
that must be matched by the mathematical downwash calculation of the integral
equation. The assumed pressure distribution used in the analysis is composed
of a chordwise singularity term £n(g- xc)2 and other modifying terms required
to satisfy the boundary conditions along the planform edges.

Rectangular Planform with Full Span Flap

~\\\\\\\\ Deflection Shape

Downwash Distribution

Figure 6 — Analysis Planform Used to Evaluate Effect of
Spanwise Singularities on Downwash Distribution

Results of applying option (1) to evaluate the spanwise integral of
equation (19) are shown in figure 7. The integral is evaluated using the
interdigiting process suggested in reference 7 where a single Gauss-Mehler
quadrature function is applied over the complete span of the planform. The
singularity at the downwash chord is not recognized by this integration
procedure and consequently the resulting chordwise downwash distribution is
smooth and continuous across the hingeline. It appears that 1ifting surface
solutions obtained using option (1) will not provide a satisfactory mathe-
matical representation of the boundary conditions for physical wing-control

surface combination. 21
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Calculated Hingeline
Normalwash l [}
|
]
LIEI ™ 1 TIEI

G R T N M Ry
X/C ~ chordwise coordinate

Figure 7 — Chordwise Downwash Distribution at Mid-Span Station Resulting from
Applying Option (1) (logarithmic singularity ignored)

Figure 8 presents the results using the second option where the
singularity is treated by approximating the pressure terms by a Taylor
series expansion and removing the singularity from the spanwise integrand.
Equation (19) has been modified by subtracting the singularities (identi-
fied in equation (21) ) and evaluating their effect outside of the integral.

Calculated !
Normalwash rjf'[1r”

L.E, . I AN T.E.
i1 & s & s 2 t— \1

Figure 8 — Chordwise Downwash Distribution Resulting from Applying Option (2)
(Togarithmic singularity is subtracted and evaluated separately)



The downwash distribution appears to be reasonable at large distances
from the hingeline; however, the downwash becomes singular at the hingeline.
This is to be expected since the pressure term used in the analysis to provide
the step function change in boundary conditions across the hingeline is pro-
portional to Loglg-xcl, which cannot be approximated by a Taylor series in the
vicinity of the singularity at E=X..-

The downwash distribution shown in figure 8 indicates that the downwash
collocation stations are to be restricted to chordwise locations that are
spaced well away from hingeline where large downwash gradients are developed.
This restriction may not be satisfied for analyses of wings having small per-
cent chord control surfaces.

This restriction may be removed by applying option (3) where the spanwise
integral is evaluated by subdividing the integration interval, -szngs, into
several subintervals and applying quadrature formulas appropriate to the
functional characteristics of the integrand.

Results of applying option (3) to evaluate equation (19) are shown in
figure 9. The integration interval has been divided into subregions and
appropriate quadrature formulas have been applied in the subregions, 4{.e.,
square root quadrature formulas applied at ends of the interval, logarithmic
quadrature formulas used on either side of the downwash station, and Legendre
quadratures applied within the remaining integration intervals.

Calculated
Normalwash

L.E. T.E.
T T

Figure 9. Chordwise Downwash Distribution Resulting from Applying Option (3)
(Togarithmic singularity evaluated by appropriate quadrature
formulas)

-~
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The resulting downwash distribution (figure 9) does contain the step
function change across the hingeline necessary to satisfy the boundary condi-
tions and does not exhibit any large gradients near the hingeline that may
cause solution sensitivities for analysis of small chord control surfaces.

Additional numerical investigations of calculated downwash distributions
have been accomplished to identify the specific integration technique that
would provide the least error in calculated downwash values for stations near
the leading edge where large pressure gradients appear in the solution process.
An assumed pressure function that is inversely proportional to the square root
of the distance from the leading edge was applied to a rectangular planform
having an aspect ratio of six. Figure 10 represents the steady state chord-
wise downwash distributions obtained at the mid semispan station using option
2 and option 3. The distributions appear to be similar for stations located
at large distances from the leading edge, however, the option 2 distribution

= = OPTION 2 [(singularity subtracted;evaluated &eparately)

15. = —O— OPTION 3 (singularity evaluated by quadratune)

illl.LlllllJ
0

0.2 0.4 0.6 0.8 1.0
X/C (CHORDWISE COORDINATE)

Figure 10 — Chordwise Downwash Distribution for Inverse Square Root Pressure
Function Resulting from Applying Option 2 and Option 3.
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(where the logarithmic singularity is subtracted from the integrand and
evaluated separately) is tending to become singular near the leading edge.
Again, this tendency for the calculated downwashes to become singular is
expected since the Taylor series expansion of the inverse square root does
not exist at the leading edge. The distribution obtained by applying
appropriate quadrature formulas to the spanwise integrand (option 3) appears
to be continuous for all regions including stations near the leading edge.

Consequently, it appears that application of option 3 will provide
solutions that will not be sensitive to the relative location of downwash
collocation stations for analysis of either small percent chord control
surface configurations or for analysis of standard 1ifting surface
configurations.

The above numerical investigations have been accomplished for the
steady flow condition by evaluating equation (19) having the reduced
frequency, k, set equal to zero. The following section establishes the
numerical methods used to evaluate the downwashes for sinusoidal unsteady
motion.

Evaluation of the Unsteady Downwash Integral

The downwash integral for unsteady motion is evaluated using a
modification of the procedure suggested by Hsu (reference 7) where two
singularities are subtracted and evaluated outside of the integral. The
procedure previously described to evaluate the downwash due to the dipole
term is modified by changing the definition of H(x,y,n) of equation (17)
to become '

H(x,y,n)

G(X!_Y, ) = G("s.YLY)
[ FEL ] (24)

such that

H(x,y,y) = 1im H(x,y,n) = 28(X,¥,n)

ey on = G'(x,y,Y) (25)

n=y
25



26

Then equation (19) may be written in the revised form of

WP (x,y,0) = f(sz 2) [Eiz_u(u%_%x_y_ﬁ Gl(x’y’n)ln'-'Y]T%)-

S
+ 1 60y )-8 (o) |y f (s2en)% s (26)
~-S

and this is returned to another form using the definitions of AP(g,n) and
the dipole kernel that results in

o fs<2 ok }t Flene 0| ghyr 1+ ||
IVE S - $%-n sN T Tyn)? \x Z+g2y 2
-5 X, %0 Yo
-ikx 1
(ym)2 (y-n)
-ikx -
+ 72 j~ AP(E,y)e 0 dg + 1y G'(X.Yn)‘n=y
X,
(27)

where P(E,n) = AP(E,n)/(s2-n?)*

; Xt -1k(x,) ‘ X
G|(x:y’n)[n=y = n f AP(E,n)e [] + '—‘*———] dg
. n=sy

X,Q, V x02+82y02



The downwashes due to the non-singular part of the kernel function are
evaluated using Gauss-Legendre integration quadrature functions. The final
form used to evaluate the downwash integral is given as follows:

S X
y [t
f(sz—hz)/’ f AP(£,n)K(x,€,y,n) d(bgE)d(bgn) =
it xz

G' (xaysn) |n=.Y]
dn

s -—
[ (s2-n2)* [f(m [cs(y,n)+c,,s (y,n)]+f(y) Shxatsy). =

-S

+ 1 G(x,y,y) +my G'(x,y,n)‘n=y

(28)

W (gn) = 2RLEn) o £y g(g,n)
(s2-n2)*%

f(n) 1is the spanwise assumed pressure distribution divided
1
by (s2-n2)%.

g(£sn) is the assumed chordwise pressure distribution.

Cs(y,n) represents the chordwise integral due to the singular part
of the kernel function

Cs(ysm) = 29
Xt ik(x-g) | 1 & 1X

= (&,n) kX o B = ]+
xf T {U-n) [ Vx-£)2+82(y-n)? | Y (x-£)%+8%(y-n)?

%

V(x-8)7+82(yn)?

- %5-209[:sz-5)2+82(y-n)2 -(x-E)] - %%1-[ X& - M]‘]dz
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Cns(y,n) represents the chordwise integral due to the non-singular
part of the Kernel function

Xt
Cns(y,n) = f Q(E.n) K(X:E:y’n)ns dE (30)
Xy,
x o
G(x,y,y) = f(y) 2 f g(&,y) e Tk(x-£) dg (31)
X
L
. Xt ik (x-€)
G'(x,ysn)| _ =—{f(n) g(g,n)e” TKIXE) 1y o X-& de{  (32)
I”y an xfz [ V(x-£)2+8%(y-n)?
n=y

The chordwise integrals of equations (29), (30), and (31) are numerically
evaluated by subdividing the integration interval into small regions and apply-
ing integration quadrature formulas appropriate to the functional character-
jstics of the integrand. The spanwise integration interval of equation (28)
is also subdivided into small integration intervals that includes an interval
around the downwash chord where logarithmic integration quadrature formulas
are applied to evaluate the spanwise singularity previously identified.

Evaluation of the spanwise derivative defined by equation (32) may be
accomplished following the rule for differentiating a definite integral
providing the integrand g{&,n) does not contain terms that are singular.
Special procedures are developed to evaluate equation (32) for the case of
having pressure functions that have an inverse square root singularity at
the leading edge or héving a logarithmic singularity at the hingeline and
are given as follows.



The chordwise integral for the case of having a pressure function that
has an inverse square root singularity at a swept leading edge is given by

X

1= f(n) 1
I e
ol

It is required to evaluate 5ﬁ1n =y and may be accomplished by forming a
Taylor series expansion of the last term of the integrand about n=y; that
is

x-§ (n -y)? ces
[] ' \/(x-E)2+62(y-n)2:l = []+ |x-£|] (x- ’ ' 34

and apply a transformation to reduce the integrand to an easily integrated
form by Jletting

-ik(x-£) X-&
g(&,n)e [1 + \[(x-£)2+ez(y-n)2] dg (33)

T=E-X£
then

dg = dt

g(.[-.'.xz’n)e-ik(x"t) [‘I + _x.-_(:.x_g‘)_] dg

Ix-(r+x2)|

. X %g
1= f(n)e ¥ f

o

2

-ikxg k( x- _u\2 2
- f(n)e j. if?: g(t+xgm)e” 1k(x-1) 13211—-(;:1%;;;771 d€ (35)

The 1ast integral of the above expression will not contribute to the
derivative value when evaluated at n=y and may be neglected in the
derivative calculation.
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Following the rule for differentiating a definite integral and applying
the chain rule

___(_(_)_g)_BFUn, =£§y.+§F_
on oU an ~ 9n
and noting that

lZl] = - 25(2)

where
8(z) is the Dirac delta function.

then the expression for the spanwise derivative becomes upon applying the
inverse transform

X
- ———(—H‘;n” 2 f L g(g,y) e TK(x-8) g
Vn=y Y Ve-x,

X
X .
X, V &%, n=y

X
+fly) 2ik [ = g(g,y) e KXE) g
Xy )

3xz
- fly) 2 I

1
\/x-xz

g(x,y) (36)
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A similar expression may be obtained for a chordwise integral that
contains a logarithmic singularity such as

Xt _
I=f Log(g-x_)%g(E,n)e T K(X-E) [ 4 x-& de 37
(n) ){L 0g(£-x_)2g(E.n)e N EeEe (37)

where X, is a hingeline that lies within the integration interval.

The integration interval is divided into two parts

xt xc-e xt
.r = 1im .f + j'
€0
xz x2 xc+e

and the same procedures are applied resulting in the expression for the
spanwise derivative given as

3l
on

_ 3af(n)

n=y M n=y

X
2 f ﬂog(i-xc)Zg(a,y)e'ik(x'g) dg
X

]
o0& on

X .
+ f(y) 2 .f Log(g_xc)Z[%ﬂig_Dl.Ef&.+ gﬂ%%lﬂ%] e-ik(X-E) dg
=y

Xo

X
+ £(y) 2ik [ tog(g-x)2g(5.y)e KXE) g
e

aX
- f(y) 2 5= Log(x-%.)? g(x.y) (38)
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Thus, the spanwise derivative of equation (32) may be evaluated for func-
tions that have singular or non-singular characteristics and the downwash in-
tegral of equation (28) may be evaluated using integration quadrature functions
that are appropriate to the functional characteristics of the integrand.

Lifting surface downwash distributions may be generated by evaluating equa-
tion (28) for any pressure expression that may be either continuous or non-
continuous over the surface. Solutions for configurations having discontinuous
downwash distributions require application of special techniques to minimize
the solution sensitivity.

Solution Process for Discontinuous Downwash Distributions

No direct means is available to obtain a closed form solution of the down-
wash integral equation that satisfies the boundary conditions exactly everywhere
on the surface. Approximate solutions are used in lieu of an exact solution
process. The approximate solution process is one of generating a finite set of
downwash sheets and constructing linear combinations of these sheets to satisfy
the boundary conditions of a finite set of pre-selected control points on the
surface.

The downwash sheets are obtained through an evaluation of the downwash
integral using assumed pressure distributions that satisfy the required loading
conditions on the planform edges. The assumption usually made is that if the
boundary conditions are satisfied at a suitable number of control points dis-
tributed over the surface, then boundary conditions over the rest of the sur-
face will be satisfied within small error limits.

This approximate procedure is equivalent to assuming that the downwash
sheets may be represented by a series of polynomials that are continuous over
the surface and may be combined to satisfy the surface boundary conditions at
arbitrary control points.



This procedure provides reasonable results for analyses of configurations
having continuous downwash distribution; however, it may fail to produce con-
sistently accurate results when applied to analyses of wing-control surface
configurations that have discontinuous downwash distributions.

The solution procedure used for analysis of continuous downwash configura-
tions has been modified such that solutions may be obtained for configurations
having discontinuous downwash distributions and is described in the matrix

equation

Iw(xsy)l =

‘where

Iw(x9y)|

ffAP(e.n)aeK(e,n) dgdn

AP(E’n)ae

[t (en) Kizin)den

ffAP(em)ae K(g,n) dgdn

is the kinematic downwash obtained from the motion
of the 1ifting surface and containing discontinui-
ties along the edges of a control surface.

is the surface downwash distribution that is
formulated having identical discontinuities along
the control surface edges as defined for the
kinematic distribution.

is the pressure distribution developed by the
asymptotic expansion process that will provide the
required change in boundary conditions across the
control surface edges defined by the kinematic
distribution.

is the standard 1ifting surface downwash distribu-
tion that is smooth and continuous and is calcu-
lated using smooth and continuous assumed pressure
distributions APi(E.n)

= [ffAPL(E’“) K(g,n) dEd"] x|a; |
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The solution process is a two step process. The first step is to calcu-
late the "residual downwash distribution by performing the operation

u::;:aﬁ.c' | S ooty e aser ——la:a(:dﬁt |

The residual distribution is to be smooth and continuous and is used as
the boundary condition for the second step, which is the solution of

| W(x,y) I = I:ffAP,((E.n) K(g,n) dedn ]x

nesidual

2 |

The final pressure distribution is then the sum of the pressure compon-

ents, i.e.

AP(E:") = P(Eon)ae + Z AP,(:(E’n) a»(‘.

A schematic of the solution process is presented in figure 11 for a con-
figuration having an oscillating trailing edge control surface.

FORMULATE

RESIDUA
DISCONTINUOUS DOWNWASH L DOWNWASH

Figure 11. Solution Process for Trailing Edge Control Surfaces



The kinematic downwash distribution is developed from the surface motion defi-
nition and displays discontinuities along the boundaries of the control surface.
A downwash distribution is calculated having identical discontinuity values
that are contained in the kinematic distribution and is obtained by evaluating
the downwash integral of equation (28) using an asymptotic pressure expression
developed for a swept hingeline trailing edge control surface. The residual
distribution is then formed by subtracting the kinematic distribution from the
calculated distribution. The residual distribution must be smooth and con-
tinuous and is used as the new boundary condition definition for which solu-
tions are obtained using standard 1ifting surface procedures.

A similar procedure is used to obtain solutions for motions of a small
chord leading edge control surface as is shown in figure 12.

DE FINE

DEFLECTION DEFINITION KINEMATIC DOWNWASH

SUBTRACT

DOWNWASH — LARGE CHORD TRAILING

DOUNWASH — FULL CHORD LEADING EDGE CONTROL SURFACE
EDGE CONTROL SURFACE

RESIDUAL DOWNWASH

Figure 12. Solution Process for Leading Edge Control Surface
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The residual distribution is formed by adding to the kinematic distribu-
tion a downwash distribution of a large chord trailing edge control surface
that has a hingeline located at the same position as the small chord leading
edge control surface and then subtracting out the downwash distribution gener-
ated for a full chord control surface.

The key to this solution process is the development of pressure distribu-
tions having coefficients of known strengths that will provide identical values
of downwash discontinuities that are contained in the kinematic downwash dis-
tribution. Formulation of the analytical pressure distributions that provide
the required discontinuities in boundary conditions are briefly discussed in
the following section.

Pressure Functions

Use of the modified solution process requires two sets of pressure distri-
butions to be defined over the 1lifting surface planform. One of the distribu-
tions is to provide identical values of downwash discontinuities as defined by
the kinematic downwash distribution and the second pressure function is re-
quired to satisfy the smooth and continuous boundary conditions defined by the
residual downwash description.

Incremental pressure expressions have been developed by Landahl3 to satis-
fy the change in boundary conditions around the edges of a non-swept hingeline
trailing edge control surface configuration that has its side edges inboard of
the planform tip.

The solution of Landahl13 was obtained using the asymptotic expansion pro-
cess. The behavior of the pressure functions is readily obtained for regions
in the immediate vicinity of the control surface leading edge and side edge
since the effect of using asymptotic expansions is to magnify the singular
region by stretching the coordinates by a small quantity € .



The solution derived by Landahl® that will exactly satisfy the required.
change in boundary conditions near the corner of a non-swept hingeline
trailing edge control surface is given as

Plen,0) = - &k [1e2ik(e-g,) | 2og| ((e-6) 787 (1) - Bln-yg)| (39)

- &) [2ik-k2(5-6,) | (n-yg)eog| Y (e )82 (nvg)? - (2

where 0O(n) 1is the rotation angle of the control surface measured in a plane
perpendicular to the y axis.

The expression contains the expected logarithmic singularity along the
hingeline and the spanwise loading has slope singularity at the side edge of
the control surface that is known to exist for 1ifting surface loadings on
configurations having discontinuous downwash distributions.

Pressure functions have been formulated by Ashley!® for a swept hinge-
line trailing edge control surface that extends to the tip of the planform.
Application of asymptotic expansions along with use of Fourier transforms
results in the following first order solution given in reference 10 and
expressed in integral form as

tanA
’ tan®A B,y/x\/{ c)+l
c (0)(x,y 0) = —-(D)- 1+——z-—+ 1 f =
\[ ( tanAC>

tanA
tancn,  BY/ x\/]/ °>
+ 2) fyh+ -1 f dq
8 tanA
q2+(‘ "4 )

where the bar coordinates represent stretched coordinates measured from
hingeline tip station, {.e., X =(g-x.)/e.¥ =(n-y¢)/e

(40)
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The 1nteghals may be expressed in a more easily handled integrable
form by making the substitution

and performing the indicated integrations which result in the shortened

\Nd 241 + dy + V\/dzﬂ -d
C (0)(;’;;,0) - _ 20(n) Log 1 1

’ 8 \/\/E]Z_H_+d]-‘/m-d

expression

(41)

g = /g2 2
where B B<+tan Ac
tanA
_ C
4 = —3
ey B BY B(n - yg)

The above expression appears to be correct since CE(O)(R}y}O)
approaches zero having a slope that is proportional to the square root of the
distance from the wing-tip and also contains a term that is proportional to
Eog(a-xc)2 to provide the proper streamwise change in boundary conditions
across the hingeline.

Pressure expressions developed in appendix 'A' satisfy the boundary
conditions around the edges of a arbitrary configuration having a swept
hingeline trailing edge control surface with side edges inboard of the
planform tip. Asymptotic expansion procedures are used to reduce the very
complicated boundary value problem to three simpler boundary value problems
for which solutions are obtained by making a direct application of Green's
Theorem. The resulting pressure expression obtained from the solution of the

three boundary value problems is given as ( with X = E-X g and y = n-Ye )



|
e

et

25,3 ' - = -
P(%,¥,0) = C; tog [\Iizﬂsziz - (L%‘Eﬂ)] +C, ¥ Log [\(§2+32y2 - x] (42)

%

where Cl = 1+2ik(%-ytanA) - ll—"‘—'I—EQEA(itanA+y(32) —————{x -ytanA)?
T8 B* B2
2Mm2 2 2
+ KZMZtan?A [(i-&tanl\)z-z (xtanA + By) ]
42" * B

BZ

o - , (ikMzi)
. - 2
c, [ H(2k+ gksrg -k2)x+-k——t—a—'m-y]e B

The expression for P(x,y,0) may be simplified by expanding the
exponential, carrying out the indicated multiplication and collecting terms
that are linear in x and y which results in the expression

. A kM2 +xtanA
e 2ik(eg) + Wle-g )| eog[ VR - EEIRA ]

S}
T’_()'(',Sl',O) = - __li
B

2ik - kz(E-EC)] y 209[V§2+6292 - i] (43)

=il®
s

-The limiting value of this expression for A=0 is equivalent to the
expression developed by Landahl® for the rectangular non-swept control
surface. The above expression for A=0 is

— o~ e . i 2 - ~ ~
P(x,y,0) = - % 1+ 2ik(g-¢,) + ﬂé-z(—g—g"—)-] Log [\[E-Ec)zﬂszyz - By]

- %[Zik-kz(a-ec)] y zog[‘ﬂa-ec)2+ezyz - (e:-sc)] (44)

and is identical to Landahl's zero sweep expression. The expression developed
for the arbitrary sweep angle case does exactly satisfy the change in bound-
ary conditions across the hingeline and side edge of a swept hingeline trail-

ikM2 )
2M2 2 " o 2 ..
L B (%-ytann)2-(%2-ytanh) | - K(%-Ftann)? e( B*
2p? 2
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ing edge control surface and should provide smooth and continuous residual
downwashes for which solutions may be obtained that are relatively insensitive
to the number of collocation stations placed on the 1ifting surface.

Pressure expressions have also been developed in Appendix "B" that satis-
fy the change in boundary conditions across the side edge of a full chord
swept leading edge control surface.

The zero-th order solution is given in terms of an inverse square root
function that is multiplied by a coefficient whose value can only be deter-
mined after performing a global integration. The inverse square root function
is continuous in the spanwise direction, that is, it does not exhibit any
spanwise singularities that could contribute to the change in downwash across
the side edge. Consequently, the zero-th order boundary value problem solu-
tion is not included within the incremental pressure expression necessary to
satisfy the change in boundary conditions across the control surface side edge.

The pressure expressions obtained as solutions of the first order and
second order boundary value problems are given as follows:

First order solution is:

Py - V2 (] ik
PP (X,y,0) = = + = \ﬂ—ytanA >X
m (\/i-ytanAz B* .

n 2
By,

(B sgn(y) V X2+p2y2 - X + tani, V[v;2+szyz + % )

x

+ -i—k_ y tog v;zi-szyz +)-(-_YtanA2+ v-z_\fx_ytanAl W + 3 x
g2 n =
V§2+32y2 +,‘(-ytanA£-\fz_V;ytanAl\/V}uBzyz +
ikM2x/82

e (25)
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The second order solution is:

2 \/x-ytanA 2xtanA,-(3tan2A,+82)

/)

. - A
+ 2{2—[1+(%-§-) (X-ytan z)]\/x-ytanA san(y) \/x2+3 y?

. 2 _ _ 2 V\/ X2+8%2y% - X Vx-ytanA
+(1§'§~) Ysgn(y)tan” V2 2

\/ X2+p%y2 - (R-ytanAl)
3ytanA
k 2
@)

\__/;,Zfﬁz?f,zfi,-xt_:a_r_\{\f,ﬁv’—(-yt‘anA’i \’V}‘(2+82y7+)'< ikM2x/g2

Uﬂ—‘

v Log - e
Vi2+82y2+)‘(__ytanl\z- \ﬁ-ﬁ‘yta“% ’1,)-(2+Bzyz+)-(
(46)
2
where C2 = v _1kM A ;v = OH(ikB) A= eH(l_ikxc)

X = E=X,o 3 Y= n-Yg

( note: X,y used here is not to be confused with
the downwash coordinate x,y )

Pressure distributions obtained by the above described asymptotic ex-
pansion process are valid only in lccalized regions of the planform since the
distributions of the outer regions have not been defined nor matched with
the inner region solutions. However, the essential part of the pressure
distribution that provides the discontinuities in downwash along the control
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surface edge is defined by the inner region solution. The distribution in

the outer regions may take on any convenient form that satisfies the required
loading condition along the edges of the planform since a unique distribution
is not being determined at this stage of the solution process. Consequently,
the surface pressure loading functions that provide the downwash discontinu-
ities are obtained by extending the applicable range of the inner solution

and modifying these distributions to meet the condition of having the pressure
vanish in proportion to the square root of the distance from the edges.

The functions used to modify the asymptotic pressure expressions are
usually artfully devised and are not unique expressions. However, there are
certain characteristics that are required to be satisfied by these functions
such that the resulting residual downwash sheet will contain a minimum amount
of distortion. Some of the required functional characteristics are established
in the following section.

Pressure Modification Functions

Pressure loading functions are developed using the asymptotic pressure
expressions and extending their applicable range from localized regions to
cover the entire planform.

For the case of a trailing edge control surface, the asymptotic pressure
expressions that are valid only for small regions around the discontinuity
region may be written as

% =, | 82(n-y )+(g-x_ ) tanA
¢ (g,n,0) = - 1 C, tog S (e-x - )2+82(ny )2 - (n-yg)+(g-x_c)tanA
P "B}, i cs s 5
_.;ﬂ_'fé Log(}/(i-xcs)2+82(n-ys)2 - (E-xcs)] (47)
L

where €, = )/ (-0,/x8)
C1 . C2 are defined in equation (42)

C, = Cyp/(-8,/x)
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Cp(x,y.o) is related to the change in pressure loading across the

surface by
AC =+
p 2 sz
AP :
= 4+
P N
AP =+ C x pV?
Py

where Cp is given by the above equation (47)
2

Then

= - B2(n-y )+(£-x_ ) tanA
AP(E,n) = ¢>V2[--°—E-C1 Log[/(g-xcs)2+32(,,_ys)z MY _~¢cs anite ]

8y ®h
--:—HEZ Log[/ (e-x ()?+82(n-y,)? - (E-xcs)] ] (48)

A characteristic of the first logarithmic term is that it is singular
only along the hingeline and the coefficient value of the singularity must
be maintained along the hingeline such that the unit change in downwash is
obtained for all points on the control surface. Thus, to distribute this
function over the entire 1ifting surface a pressure modifying function is
devised to multiply this term such that the coefficient value is maintained
along the hingeline and approaches zero at the planform edges in proportion
to the square root of the distance from the planform edges.

The modifying function is made up as a product of two functions such
that the streamwise and spanwise boundary conditions may be satisfied
independently.
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The spanwise modifying function, H(n), is defined as

Vi-€ (1. + .sC + .37582) In} >y,

H(n) = (49)
1.0 In] <y,
. Unl-y,)
where ¢= ls-yoi
Yo = the spanwise coordinate of outboard side edge of the

control surface.

H(n) has a value of 1.0 and a slope of zero at the control surface outboard
side edge and then diminishes to zero in proportion to the square root of the
distance from the planform tip.

The chordwise modification function, El’ must be devised such that E1 =
1.0 at the chordwise hingeline station to maintain the singularity strength
and must approach zero in proportion to the square root of the distance from
the leading and trailing edges.

However, there is an additional condition required of E1 such that smooth
and continuous residual downwash are developed. The additional condition im-
posed on E1 is that E1 must have a zero slope in the streamwise direction at
the hingeline station. The requirement of having a zero slope may be illus-
trated by examining the results of a numerical investigation that was accom-
plished to identify the essential properties of E1 such that reasonable distri-
butions of residual downwashes would result.

Downwash distributions were obtained at the four downwash chords shown in
figure 13 by applying the zero sweep loading function given as follows:

AP(g.n) = 8pV2 f(n) /52-n2 H(n) E; Log [/(c-zc)2+82(n-ys)2 - s(n-ys)] (50)
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Figure 13. Analysis Planform Used to Evaluate By Characteristics

One of the many modifying functions investigated is the function suggested
by Landah13 which has a value of 1.0 at the hingeline and approaches zero in
proportion to the square root of the distance from the leading and trailing
edges as shown in figure 14.

(x4-£) (e-x,)
o) rom) 1.2
t “¢c c "t
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i
- .6 1.0
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|
L .2
1 1 1 ] [ 1 1 []
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X/C- CHORDWISE COORDINATE

Figure 14. Functional Characteristics of El(;)
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The residual downwashes that result using the El(g) function of figure 14
are shown in figure 15 and represent the distributions on the aft portion of
the wing-control surface regions.
tinuous for downwash chords that are inboard of the control surface side edge.
However, for spanwise downwash stations located on the control surface, the
distributions contain a slope discontinuity that may not be easily satisfied
by the downwashes generated by the remaining portion of the solution process.

The residual downwashes are smooth and con-

1.0 — HyL
Kaa
o On Controf
.8 M Sunface
Residuat
Dowrwash 6
4 _434&"15—43 044 Control
: Surface
O o
.2
1L | | 1 1 |
5 é 7 .8 .9 1.0
X/C- CHORDWISE COORDINATE
Figure 15. Residual Downwash Distributions Resulting from Using the

El(g) Function of Figure 14.

This slope discontinuity could have been anticipated by noting that the
logarithmic term of the loading function may be written as

Log(g-£.)? - Log[/Tz-cc)2+82(n-ys)2 + s(n-ys)] (51)
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and coupling this with the El(g) function represented as a Taylor series ex-
pansion about the hingeline in the form of

- 2 42
E (€) =1+ (e-¢) .:%1 + (Eifc) %._El I
£=g, € Tgag,

then insertion of these terms into downwash equations provides a series of
downwash integrals having the properties presented in figure 16.

Iff(&.n) LOQ(E-Ec)zk(x,g,y,n) dedn > ,——/i
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[ ] F- ’cl
! Angle

fff(s.n) (e-£,) Log(g-£ )2K(x,E,y,n) didn )//:\\

fff(z,n) (g-£.)%Log(£-£ )2K(x,E,Y,n) dedn wily :

S TN

Figure 16. Chordwise Downwash Variations Caused by
Singularity Multiplier Functions

It is apparent that the finite angle slope discontinuity displayed in
figure 15 is due to the non-zero slope at the hingeline contained in the
definition of El(g) shown in figure 14. Also, it may be noted that large
curvatures in downwashes may be minimized by devising a function that con-
tains only a small amount of curvature in the vicinity of the hingeline.

After extensive numerical evaluations of various El(g) functions, the
function shown in figure 17 represents the final form of El(g) that has been
selected to modify the chordwise loading expressions.
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Figure 17- Final Form of Chordwise Modification Function

Residual downwash distributions of figure 18 were obtained using the
El(g) function of figure 17. It appears that this function does provide slope
continuity across the hingeline as well as developing minimum waviness over the
rest of the chord. Solutions using this modification function should then be
relatively insensitive to the distribution of downwash collocation stations.

On Control
Surface

0§§ Control
Surface

X - CHORDWISE COORDINATE

Figure 18- Residual Downwashes Obtained Using El(g) of Figure 17
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The second logarithmic term of equation (42) contains a singularity of
the type (n-ys) Tog (n-ys) that is to be applied along the side edge of the
control surface. The strength of this singularity is to be maintained along
the length of the side edge to provide the proper downwash discontinuity along

the side edge for the unsteady flow condition.

A function (suggested by Landah13) that may be used as a pressure modifi-
cation function to maintain the singularity strength along the side edge as
well as forcing the pressures to zero in proportion to the square root of the
distance from the trailing edge is given by the following equation and also

presented in figure 19.

(xt-E)2

E (E)n) =
? (xt-g)2 +32(n-ys)2

T
L.E. Mid Chond T.E

Figure 19. Schematic of Ez(g,n), Pressure Modification Function
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The side edge modification function given by equation (53) has been
investigated using numerical procedures to determine its range of validity in
maintaining the side edge singularity strengths. Results of the investigation
indicate that the function requires a modification to reduce its spanwise
gradients in the region of the side edgé-trai]ing edge junction. It appears
that in applying equation (53) to the side edge pressures that the singularity
strengths .._ar the trailing edge are being modified to such an extent that the
spanwise integration quadrature functions are unable to detect the infinite
slope of the pressure function which results in an error in predicting the
spanwise downwash discontinuity.

Equation (53) has been modified to provide a proper evaluation of the
side edge downwash discontinuity and is given in the following form for use in
a full chord control surface analysis.

2 2 o 2 %
- - + -
(x,-¢) ] (x4 X,l)2 Cln ys)2 (54)
(xt-xﬂ,) (xt'g) + C(n-ys)

Ez(E’n) =
C = 0.1
Equation (54) has a value of 1.0 along the side edge and leading edge and

also forces the pressures to approach zero in proportion to the square root of
the distance from the trailing edge.

The side edge modification function used for a trailing edge control sur-
face configuration is given as

(E-X,L)z * (xt-&;)2 -I%

: i (55)
(£-x,) “+(n-y,) (xt-a)fc(n-ys)j

EZ(E-n) =

In this case, the pressures are forced to zero in proportion to the squar:
root of the distance from both the leading and trailing edges.



Loading Functions for an Inboard Partial
Span Control Surface

Pressure loading functions formulated for a trailing edge partial span
control surface having side edges inboard of the planform tip are devised
from the trailing edge control surface pressure expansion of equation (42) as
follows:

AP(E.n) =  4pV2 /' sZ-nZ f(n) g(&,.n) (56)

where f(n) = OH/(4I Y s2-pZ )

g(g,n) = [9?(&.!\) + gg(s,n)] + SF[gli(E»n) + gl?:(E,n)]

oy is the control surface rotation angle relative to the wing
rotation angle and measured in a plane perpendicular to the

y axis.

SF is the symmetrical sign factor that has a value of SF = 1.0
for symmetrical Toadings and SF = - 1.0 for antisymmetrical
loadings.

The g?(g,n) loading functions are the loading functions that are due to
the right-hand semispan control surface deflection. The functions are formu-
lated such that the hingeline singularity is turned on at the inboard side
edge and maintained at full strength along the hingeline and then turned off
at the outboard side edge.

The g?(g,n)loading functions are non-singular for spanwise stations
that are outside of the spanwise control surface location. Consequently,
the loadings are extended over the rest of the surface to the planform tips
where the loadings are forced to zero in proportion to the square root of
the distance from the tips.
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9?(E.n) = E, H(n) C, [lal‘ﬁilqz-lci)z + 82(n-y;)? - (82(n-y;) + (E-xci)tanAc)]

- ;,,[3 Ae-x )7 + 82(n-y )2 - (B2(n-yy) + (z-xco)tanhc)] ] (57)

The subscripts i and o represent the inboard and outboard side edges
respectively. The parameters Xis ¥; and Xos ¥ represent the coordinates of
the hingeline at the inboard and outboard side edge stations of the control
surface.

The E1 function forces the loadings to go to zero in proportion to the
square root of the distance from the leading and trailing edges and also

has a value of E1 = 1.0 and zero streamwise slope at the hingeline.

The expression for E1 for stations ahead of the hingeline is given by

Me-x,)(2x -x,-£)

E, " (58
1 (xc-xl) )
for stations aft of the hingeline,
Ax.-€)(g-2x_+x.)

1 (xy-x.)

The H(n) function is the spanwise pressure modification function having
a value of H(n) = 1.0 for spanwise stations located between the left hand
outboard and right hand outboard control surface side edges. For stations
outboard of the outboard side edges, the H(n) function goes to zero in pro-
portion to the distance from the planform tip station:



.a 1. - (1 + .5C + .375C2) Inl 2y,
H(n) = (60)
1 Inl <Y,
- (lnl - -Yo)
‘Where cC ——M
(s - ¥,)

The C1 function represents the coefficient multipliers obtained in
deriving the pressure expressions by means of asymptotic expansions. The
C, expression of equation (42) has been shortened by expanding the exponen-

tial function and performing the indicated multiplication that results in
the expression

1 kM2 2 K2MY . k2M2 k2
C, = -—|1 + 2ik(g-g) + — (g-&) - (g-¢) -t — +— (61)
1 [ J 82 d c (432 B2 g2 2 )

- 2 2
where 8 /82 + tan Ac

The loading functions that are due to motions of the left hand side
control surface are obtained from the above expression by replacing Yoo ¥i»

and tanAc by Yo Y; and —tanAc, respectively.

The second part of the pressure function defined in equation (42) is
formulated into loading functions gg(g,n) and g;(g,n) by applying other
pressure modification functions. The Toading function due to the singu-
larity developed for the right hand side control surface motion is given as

Qg(tnn) = H(n)[: Ex(y;) Colyg) (n-y;) tog [lﬁk-xc1)2+ 82(n-y;)? - (E-xcii

(62)

- Exlyg) Colyy) (n-yy) tog [v’(;-xco)2+ 82(n-y,)? - (e-xco]

53



54

The subscripts i and o pertain to the inboard and outboard side edges
respectively. The (xi, yi) ,(xo, yo) parameters are the hingeline coordinates
at the inboard and outboard side edges respectively.

The logarithmic function is singular only along the side edge which
requires that the strength of the singularity be maintained only along the
side edge and then may take on any other desired form away from the side
edge. The Ez(ys) function is devised in such a manner as to have a value
of Ez(ys) = 1.0 along the side edge to maintain the singularity strength
and is also devised to have a characteristic of reducing the pressures to
zero in proportion to the square root of the distance from the leading and
trailing edges.

Using Y to represent either Z for inboard or Yo for outboard side
edges results in the following chordwise pressure modification function.

(x,-£)2 * (g-x,)? *
Eyr(yg) = = > - > (63)
(x,-£)2 + C(n-y,) (g-x,)% + C(n-y)

where C = 0.10

The spanwise modification function H(n) is the same function previously
described and is given by equation (60).

The Cz(ys) terms are obtained from equation (42) by expanding the
exponential function and performing the indicated multiplication that
results in the expression:

Colyg) = [ =21k + k2(e-6) + K-y ) tamn, ] (64)

The loading functions developed for motions of the left hand side
control surface are obtained from the right hand side terms by replacing
Yos ¥go and tanAC by “Yps Yo and -tanAc, respectively.



Loading Functions for a Full Chord Control Surface

Loading functions for a full chord control surface are formulated in
a similar manner using the pressure expressions of equation (45) and equa-
tion (46).

Loading functions developed from equation (45) for the inboard side
edge of the right hand side control surface are given in localized coordin-
ates of X = g-x,; and y = n-y; .

R jkM2x /g2 1
g;(g,n) = e H(n,y;)| Eo C
i 1 33 & -‘y’tanl\z X

x[i[m- ;]" +tams, [ A2+ g7 4 ;]”]

%1

+E,C
374 !.|y|

" b x|
/X - ytanA [B_y[/xz + 8292 - i] + tanAL [/xz + 8292 + i] ]

+ Epf( ¢+ € ) F] X

~ -~ ~ -~ -~ -~ %

/x2 + g2y2 + X - ytanA + v2(x - ytanh, ) [&2 + g2y2 + x]

x Log e ~ - ~ 7 -~ ~ r Y .V
/x2 + g2y2 + x - ytanh,, - 2(x - ytanAl) [/;2 + B2y? + x]li

% A KL
+Ey /x - 9tanA,’|:C6 [v’x2 + B2y? + i] +% c, [&2 + g292 + x] ]
y

~ - -~ ~ -~ ;s
- -1 2(x - ytanAl) [/x2 + g2y2 + x]

By ¥2
+E,C,L——t
279 lyl 2 /xz + 82y2 - i +9tanAl (65)
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The spanwise modification function H(n.yi) is defined as having a value
of 1.0 with a zero slope in the spanwise direction at the control surface
side edge and then diminishes to zero in proportion to the square root of the
distance from either planform tip and is given by the following expression:

H(ny ) = /A - € [1+.5€+ .3752] (66)
- - +s if n<y
where . (n ys)/(lysl ) s
c:

(n =y /(s - lygl) if n>JYg

The modification function E2 has a value of 1.0 along the side edge and
diminishes to zero in proportion to the square root of the distance from the
trailing edge and is defined as

' %
(x, - g)z[ﬂxt -x,)2 + .1n - ¥)? ]
E =

(67)
2 (x - xl)z[(xt -£)2+ .1(n - ys)z]

The E3 modification function has a value of 1.0 along the leading edge
and approaches zero in proportion to the square root of the distance from
the trailing edge and is given by

E, =[/r§ - 2 - ;2]/% (68)

where £ is defined within the expression of

£= (g, *g)/2 + [(g, -£)/2])¢



The pressure coefficients C3 through C9 are obtained from the expressions

of equations (45) and (46), and are given as follows:

'c3 = 2/7 [1 - ikx = x,5))/ 8,2
64 = 2/5'[1 - k(X - xzs)](iklﬁz)(llazz)

< a 2
cg = Tk[1 - ik(x - x,8)]/ By

[ kM2 (x__- x,.) + i(82 - M2)
C = 2/§'k[, cs_"is X
82

[2§tanAl—(3tan2Al-Bz)91]

X [tanAL+ (ik/82)
4

kM2 - <1g2 _ M2
kM (xcs xls) + i(8 M2)

g2

¢, = Z/Ek[ ][l + (1k/B2)(% - 9tanA£)/2]

242 - 2 _ M2
-k2M (xcs xls) + 1(8 M2)

Cg = k[f , ][} + (1k/82)(x - .759tannl)]

BZ

2m2 - 2 _ M2
~k2M2(x - x, ) + 1(8Z - M )]

= (§k2/282)] .
Cq (ik%/28 )[ 2

The loading function described in equation (65) is formulated using pres-
sure expressions that exactly satisfy the boundary conditions at the inboard
side edge of the full chord control surface located within the right hand semi-
span region. Loading functions due to downwash discontinuities at other side
edges are obtained from equation (65) by inserting new definitions of X and ¥
into the equation such that the equation is transformed into local coordinates

of individual side edge stations.

57



Loading Functions Used in Solution of Residual Downwash Distribution

The loading functions used to obtain solutions of the residual down-

wash distribution are defined as follows:

N W
e = 4w 22 3 3 ay ¢ o™ icn) (69)

n=1 m=1
where a, are the unknown coefficient multipliers
sin(n¢)

(M (n) = TS

1,3,5,-- 2n-1 -= 2N-1 symmetrical
2,4,6,-- 2n ---- 2N antisymmetrical

N is the number of downwash chords on a semispan

6 = cos'l(n/s)

cot é} m=1]

g(m)(ﬁ,n) = _
sin(m-1)e m=2,3,4, --- M

M s the number of downwash stations on a downwash chord

The chordwise coordinate 6 is not to be confused with the control surface

rotation angle eH(n).

The loading functions g(z,n) have been described only in terms of a
particular side edge deflection to indicate how the asymptotic pressures have
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been modified and extended to the planform boundaries. The complete set of
expressions are provided in the computer program and are well annotated for
each of the control surface configurations and need not be repeated in this
section.

Output of the solution portion of the program using the above described
loading functions results in generalized forces described in the following
section.

Generalized Forces

Generalized forces are formulated using two sets of pressure distributions
that result from the solution of 1ifting surfaces having discontinuous down-
wash distributions.

Generalized forces are defined as follows:

0y = Jf 95t wilean) dlnge) dtbg) (70)

surface

where the limits of integration are the physical boundaries of the half span
configuration.

Hi(i,n) is ith deflection mode shape.

APj(E,n) is the sum of the singular (asymptotic pressures) and regular
pressures obtained as a solution of the residual downwash
distributions.

aP;(e,n) = 4P (g,n) + &Py(E.n),, (71)

The dimensions of APj(E,n) are: (force/area)(per unit qj)
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The regular pressure distribution APj(E,n)r is given as

-/- %E(J)

n=1 m=1

Apj(z’") = dpV2 = (n)(n) g(m)(E.n) (72)

(3)

where an’ are the coefficient multipliers obtained from the
integral equation solution using the residual downwash

distributions as boundary conditions for the jth mode.

f(")(n) represents the assumed form of the spanwise pressure

variation defined in equation (69).

g(m)(E.n) is the assumed form of the chordwise pressure

variation defined in equation (69).

The singular asymptotic pressure distribution is given as

4 .
(

8P;(En),q = B0V2 VAR Akii f(n) g(£,n) (73)
k=1 =

where f(n) = L/Eat/sz - nz]

g(£,n) = are the loading functions that are formulated using the
asymptotic pressure expressions and the pressure modifi-
cation functions given in equation (56) or equation (65)
depending upon the configuration being evaluated.
(j)
Ak-l are four coefficients of a cubic polynomial used to

define the spanwise twist distribution of eH(n).



The program output of pressure is 1ifting pressure coefficient per unit
generalized coordinate qj , and its units are: per unit generalized co-
ordinate qj . Its numerical values are proportional to the modal-displacement
input. The program output of pressures is given as follows:

APj(E.n)
}; pV2

= PROGRAM OUTPUT (74)

where PROGRAM OUTPUT = 8 ¥s2 - n2

S
Los (3) £(n),y - (m) d @)
2 2 a0 ey o™Meny + 3 Al f(n) glem)
n=1 m=1 k=1

Sectional generalized forces may be obtained for any number of arbi-
trary locations along the semispan and are defined as:

bo*t )
P.(&,
boXy

The section generalized forces Q?j have the units: (force per unit
planform dimension per unit qj)x(units of modal-displacement input).

The program output of section generalized forces has the units: (plan-
form length units)x(modal-displacement units) per unit aj » and the program
output is proportional to the modal displacement squared and to planform
length.
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The program output of section generalized forces is given by

S
Qi3 = PROGRAM OUTPUT (76)
% pV2

where PROGRAM OUTPUT = 8 ggf_:_gf_ X
3

AT 1 (3)

f [Z a8 #M ) o™ gy + 30 A Fln) Q(E,n)]Hi(E.n) d(bge)
n=1 m=1 k=1 ~

boXy,

Total generalized forces are formulated using the definition of equa-

tion (70) and the generalized force elements Q].j have the units:

(force per unit qj )x(units of modal-displacement input)

The program output of total generalized forces is given by

bgs boxt
Qy ;
—_ = PROGRAM OUTPUT = g Hy(Eon) 2 - n2 y
5 pVZ S
0 bg*,

NoM 4 (4)
[z 3 A ey g o3 AL f(0) g(E,n)]d(bOE) d(bgn)
n=1 m=1 k=1 ~ (77)

The program output has the units: (planform area units)x(modal dis-
placement units) per unit qj » and the program output is proportional to
the modal displacement squared and to planform area.
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It should be noted that the sectional generalized forces of equation (75)
are used to obtain information on the spanwise loadings. There is no restric-
tion on the number of stations where sectional generalized forces may be ob-
tained and is limited only by user option.

The spanwise locations where the sectional generalized forces are calcu-
Tated do not coincide with the spanwise qUadrature stations where chordwise
integrals of equation (77) are evaluated. The chordwise integrals of equa-
tion (77) are calculated at particular spanwise stations depending upon the
quadrature distribution being used for a particular configuration and are not
printed as output from the program.

PROGRAM CAPABILITIES AND LIMITATIONS

The computer program developed around the preferred solution process may
be used for a vast array of analysis configurations and has capabilities and
limitations listed below:

1. Trailing edge control surface configurations may be composed of a full
span, inboard partial-span, outboard tip partial-span, or up to six
individual control surfaces including side-by-side common edge control
surfaces, and nested controls.

2. For reasons of detail accuracy, leading edge control surfaces are recom-
mended to be limited to control surfaces having side edges inboard of
the planform tip station.

3. A1l hinge lines of trailing edge control surfaces are assumed to be
located at the leading edge of the control surfaces. All hinge lines of
leading edge control surfaces are assumed to be located at the trailing
edge of the control surface. Control surface hinge 1ines may have indi-
vidual definitions; however, each hinge line is assumed to be defined by
a linear equation.

4. A1l control surface hinge lines and inboard side edges are assumed to be
represented by a sealed gap condition.
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10.

11.

12.

13.

14.

15.

~AT1 control surface side edges are assumed to be parallel to the remote

stream direction.

Spanwise elastic twist distribution of the control surface hinge line is
approximated by a cubic polynomial to allow a spanwise variation of the
hinge 1line rotation oH(n).

Control surface camber bending is treated within the regular 1ifting
surface solution.

Lifting surface solutions of planforms not having control surfaces may
be obtained upon user option.

Spanwise symmetrical or antisymmetrical analysis may be accomplished upon
user option.

Planform definition is assumed to consist of linear segments defined by
input data. (See Appendix C on effect of locating downwash chords near
junctions of linear segments of planform definition.)

Downwash boundary conditions may be modified to include local streamwise
velocity variations due to airfoil thickness effects. (See Appendix C.)
(See reference 4 for limitations.)

- Input mode shapes may be defined at many points on the surface (such as

obtained from a finite element structural analysis).

Multiple k value and Mach number analyses may be made in a single
machine run (see reference 4, section 3.7.2 LIMITATIONS).

The printed output of the program, obtained on user option, consists of
a definition of kinematic downwash matrix, mathematically discontinuous

downwash matrix, residual downwash matrix, pressure series coefficients,
chordwise array of pressures at prescribed spanwise stations, sectional

generalized forces, and total generalized forces.

Intermediate and/or final results may be optionally saved on tapes for
economy of reuse.



VALIDATION STUDIES OF ASYMPTOTIC PRESSURE EXPRESSIONS

Numerical investigations have been conducted to determine the validity
of using any of the various asymptotic pressure expressions that have been
proposed3®7°8 for analysis of configurations having swept hingeline trailing
edge controls.

The criteria used to judge the correctness of the asymptotic pressure
expressions is that the residual downwashes are required to be smooth and
continuous over the 1ifting surface including the region of the control sur-
face edges. Since the asymptotic pressure expressions are developed to satisfy
the basic flow equation and the change in boundary conditions across the edges
of the control surface, then the subtraction of the kinematic downwash dis-
tribution from the distribution having identical discontinuity values must
result in a residual distribution that is smooth and continuous. Otherwise,
it must be presumed that the expressions are functionally insufficient to
satisfy the original boundary value problem.

Initial studies to determine the characteristics of the residual down-
washes were conducted on a zero sweep planform having a 30% chord control sur-
face. The analysis was conducted for several spanwise length control sur-
faces. The pressure expression used in the analysis is the expression de-
veloped by Landahl13 for the zero sweep rectangular control surface and for the
steady flow case of k=0, the expression is given as

Cp

- %—Lag[/(g-gc)z + 82(n-y)? - B(n-ys)] (78)

Analysis results obtained for all of the control surface configurations
indicate that the residual downwashes are smooth and continuous over the en-
tire planform and the final solutions provide generalized force values that
are almost invariant with the number of collocation stations used in the
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analyses. Chordwise pressure distributions obtained for spanwise stations
located at large distances from the control surface side edges decrease in
value montonically from the leading edge to the trailing edge without display-
ing any chordwise waviness in any of the study configurations including solu-
tions for very small span control surface configurations.

It appears that solutions obtained for the zero sweep control surface
case using the pressure expression of equation (78) will be almost variant
with the number of collocation stations used in the solution process.

Solution sensitivities were then obtained for the swept hingeline case
using another loading function as suggested by Ashleyll and as applied in

computer programs developed by Darras and Dat!? and by Zwaanli3,

The form of the k=0 asymptotic pressure expression is given as

¢, = - -3% Log[v/(E-Ec)z + 62(n-y )2 - B(n-y,)] (79)

where —
B = /ril-MzcoszAc)/coszAc = /g2 + tanzAc

It should be noted that the only difference between this expression for swept
hingelines and Landahl's expression for non-swept hingelines is the factor B
as contained in the multiplying coefficient. Unsteady 1ifting surface pressure
distributions were obtained using the constant chord 25° sweep planform of
reference 17 shown in figure 20 for which experimental 1ifting surface data
are available. Motion of the configuration is composed of an oscillating out-
board flap with all other components maintained in a stationary position.
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Figure 20 - Experimental Planform-of Reference 17 Showing the Side-by-Side
Control Surface Arrangement. (dimensions in meters )

Figure 21 represents the chordwise variation of the in-phase pressure
component (ACpreal) for a spanwise station that is located at a large dis-
tance away from the control surface side edge. Experimental values are
represented by the open symbols and two theoretical curves are given that
represent the solution results using two distinctly different distributions
of collocation stations. The theoretical results for the (4,6) solution repre-
sent the results obtained using 4 collocation stations on 6 downwash chords.
The downwash chords are located at relatively large distances away from
the control surface side edge. Theoretical prediction using the (4,6) dis-
tribution follows the trends of the experimental values, except in the region
of the hingeline gap where the gap is affecting the experimental results.
Whereas, the solution results of (7,9) distribution contain a chordwise
waviness near the trailing edge that is thought to be due to having
the downwash chords located very near the control surface side edge. The
presence of small pressure wave lengths of the (7,9) distribution results, in
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Figure 21 - Comparison of Theoretical ;nd Experimental In-phase Pressures.

comparison with the (4,6) distribution results, indicates that the residual
downwash distribution may not be smooth and continuous across the control sur-
face side edge with the result that some of the low wave length assumed pres-
sure modes are required to satisfy irregular boundary conditions being
generated by the asymptotic pressure function of equation (79).

Numerical investigation has been conducted to determine the character-
istics of the residual downwashes being generated using the pressure expres-
sion of equation (79) applied to the analysis planform of figure 22. Effect
of the large hingeline sweep angle on residual downwashes should be well
identified in using this configuration since tanA becomes equal to the same
order of magnitude as g2.

The spanwise variations of the residual downwashes obtained from the
investigation for k=0 and M=0 are shown in figure 23. The spanwise
variation of residual downwash for stations ahead of the hingeline is smooth
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Figure 22. Planform Used to Evaluate Residual Downwash Characteristics.
and continuous. However, for stations aft of the hingeline, there is a finite
discontinuity as well as a slope discontinuity at the side edges of the con-
trol surface. This side edge discontinuity may be analytically predicted,
since it can be shown that the pressure expression will satisfy the boundary
condition discontinuity across the hingeline, but will not satisfy the side
edge discontinuity condition. Consequently, use of the pressure expression
of equation (79) should be 1imited to configurations having zero sweep angles
and large span length control surfaces with the restriction that the colloca-
tion stations are spaced well away from the control surface side edges.
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Figure 23 - Spanwise Residual Downwash Distributions Along Spars Forward
and Aft of Hingeline Using Pressure Expression of Equation 79.

Residual downwashes have also been obtained using the configuration of
figure 22 and applying another pressure expression that has been used in
computer programs developed by Rowelﬁ Medanli and Hewitt1§ The pressure
expression contained in these references for k=0 is

C

oy — _
R Zog[\f(a-ac) + B%(n-y) - B(n—ys)] (80)

This expression differs from equation { 79 ) by having B included within
the logarithmic function as well as appearing in the multiplying coefficient.

The residual downwashes shown in figure 24 indicate that for chordwise
stations ahead of the hingeline the residual distribution are smooth and
continuous across the side edge. However, the distributions have a slope

discontinuity across the side edges for stations aft of the hingeline.



It was also noted that for small control surface span lengths the magnitude
of the distributions remained the same and the discontinuity peaks were spaced
closer together which produces a highly localized oscillatory distribution in

Inb'd Side Outb'd Side
4 - Edge Edge

] ] ] ] |
0 . .2 .3 .4 .5

¥/S- SPAMVISE COORDINATE

Figure 24 - Spanwise Residual Downwash Distributions Along Spars Forward
and Aft of Hingeline Using Pressure Expression of Equation 80.

the residual downwashes. This localized distribution in residual downwashes
is identified as being the major contributing factor that may produce
questionable results for small span length control surface analyses.

In order to alleviate the solution sensitivities caused by jrregular
residual downwashes new pressure expressions were obtained by reformulating
the asymptotic expansion process following the procedures suggested by
Landahl? The step-by-step procedure is presented in appendix 'A'. The k=0
pressure expression obtained from the new formulation is given as

c =__6_H_y_0 V§2+32(— )2—[32(- )+>ZtanA]/§ (81)
p = s n-yg n-y,

where X = g—xcs
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and the resulting residual downwash distributions are shown in figure 25 for
the analysis configuration of figure 22. It should be noted that the residu-
al distributions are now smooth and continuous for all stations either ahead
or behind the hingeline. The chordwise pressure distributions at large span-
wise distances away from the control surface were found to be montonically
decreasing in value from the leading edge to the trailing edge. Furthermore,
the final 1ifting surface pressure distributions remain almost invariant with
the distribution and number of collocation stations used in the analyses.

Inb'd Side Outb'd Side
L. .4 Edge Edge

Residual Aft of Hingeline
Dowrwash - .2 \

L, F'd of Hing
i | ! ! 1 i 1 | A d
0 1 .2 3 4 .5 6 7 g 9 1.0

¥/S - SPANWISE COORDINATE

Figure 25. Spanwise Variation of Residual Downwash Distribution Using
Pressure Expression of Equation 81.

Numerical investigations have also been conducted to determine the valid-
ity of the equations developed to satisfy the change in boundary conditions

across the side edge of an oscillating full chord control surface.

Loading functions developed for the full chord control surface given by
equation (65) have been used to evaluate the residual downwash distribution.
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The analysis configuration is a constant chord 45° swept planform having
a full chord control surface with side edges located at 60% and 80% of the
semispan length. The residual downwash distribution is shown in figure 26
and indicates that the residual downwashes are smooth and continuous across
the side edges.

Inb'd Side Outb'd Side
2 Edge Edge
Residual g,
Downwash ~°
-2 F

[ - -l A V- i y -l ' A 1 -

0. .2 4 .6 .8 1.0

y/s - Spanwise Station

Figure 26. Spanwise Residual Downwash Distributions for a Full
Chord Control Surface Hinged at 30 Percent Chord.

It appears that the asymptotic pressure expressions developed for the
swept hinge 1ine trailing edge control surface and for the swept leading edge
control surface does provide the proper downwash discontinuities and may be

combined to provide analysis capability for the partial chord leading edge
control surface.
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RESULTS, COMPARISONS AND DISCUSSION

This section contains an illustration of the downwash subtraction pro-
cedure and also provides pressure distributions and generalized forces result-
ing from analysis of five wing-control surface configurations for which ex-
perimental data are available. The experimental configurations consist of
(1) the swept-wing with a non-oscillating full span flap of reference 18,

(2) a swept-wing having an inboard partial span control surface of reference

19 for which non-pscillatory pressures are available, (3) a rectangular wing

having an oscillating full span flap (reference 20), (4) a swept wing having

oscillating side-by-side control surfaces (reference 17), and (5), a highly
" swept delta wing having leading and trailing edge controls (reference 23).

Description of Downwash Subtraction Process

The configuration of reference 17, shown in figure 27, is used to
illustrate the downwash subtraction process.

~Y

25‘7 LOCATION OF PRESSURE
ORIFICES

4

0.1§m

Figure 27.- Experimental Planform of Reference 17 Showing the
Side-by-Side Control Surface Arrangement (dimensions

in meters)
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The inboard control surface is assumed to be oscillating about its hingeline
at a reduced frequency of k = 0.372 and at a Mach number of M = 0. The rota-
tion angle is assumed to be constant across the span of the control surface
having a value of one radian measued in a plane perpendicular to the y axis.
The remaining portion of the lifting surface is assumed to be at rest.

The in-phase part of the kinematic downwash distribution obtained from
the motion definition is shown in figure 28 for nine chords equally spaced
across the semispan. The downwash has a uniform value of $-= 1.0 over the

control surface and is zero everywhere else.

/

Figure 28. Kinematic Downwash Distribution Derived from
Motions of Inboard Flap

Downwash distribution resulting from the integral evaluation using the

loading functions defined by equation (56) is shown in figure 29. The distri-
butions are smooth in regions outside of the control surface and a unit change
in downwash across the hingeline is obtained for the chords that lie on the

—_—
T—

control surface. =
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i Since the modified d

istribution is smooth and does not contain any discontinu-

ities, it appears that the pressure loading functions (equation (56)) that

were developed from
the proper descripti
for configurations h

" Steady-S

the asymptotic expansion process of reference 3 provide
on of surface loadings to be used in obtaining solutions
aving discontinuous downwash distributions.

tate Results for Full-Span Flap Configuration

The full-span flap configuration of reference 18 is shown in figure 31
for which experimental pressures were obtained for various combinations of
flap deflections and wing angles of attack. The flap deflection and wing

| angle of attack were maintained at constant values for each experimental run.

"

1
—{15.9

-—lls.s};gj"'

NACA 64A010 AIRFOIL SECTION

LOCATION OF PRESSURE
ORIFICES

Q25 CHORD OF
AIRFOIL SECTION

Figure 31.- Experimental Full-Span Flap Configuration

NACA RM A9G13 (dimensions in cm)

Experimental pressures were obtained along a streanwise section located

at the 50% semispan

station. The longitudinal junction between the wing and

flap was sealed to prevent flow leakage between the lower and upper surfaces

at the hingeline.
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The theoretical pressure distributions are obtained using a modi-
fication on the boundary conditions (described in Appendix C) that in-
clude local streamwise velocity variations due to airfoil thickness
effects. A comparison of the experimental and theoretical results are
shown in figure 32.

© EXPERIMENT (NACA RM A9G13)
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Figure 32.- Theoretical and Experimental Chordwise Pressure Distributions for a
Full-Span Flap Deflected by § = 10°, o = 0.0° at M = 0.21 and k = 0

The experimental sealed gap condition at the hingeline satisfies
the theoretical assumptions (reference 3) and provides a one-to-one
basis for evaluating the accuracy of the theoretical prediction method.

The comparison indicates that the experimental values are theo-
retically predicted within very close tolerances over the entire length
of the chord even in the vicinity of the hingeline.
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Steady-State Results for a Partial-Span Flap Configuration

The partial-span control surface configuration shown in figure 33
represents the experimental planform of reference 19 to obtain chord-
wise pressure distributions due to a steady flap deflection. Pressures
were obtained along a streamwise chord located at the 46% semispan
station. The hingeline gap was sealed providing a one-to-one basis for
comparing theoretical and experimental results.

LOCATION OF PRESSURE
ORIFICES

Figure 33.- Experimental Planform of a Partial-Span Flap Configuration of
NACA RM L53C23 (dimensions in cm)

Theoretical pressures were obtained along various streamwise chords
spaced over the semispan and are shown in figure 34. The comparison
indicates that the experimental pressures are accurately predicted by
the theoretical technique over the length of the chordwise strip for-
ward of the hingeline. The theoretical distribution over the control
surface are only slightly larger than the experimental values. Con-
sequently, it appears that the 1ifts and hinge moments may be predicted
within reasonable accuracy limits for configurations having a sealed

gap at the wing-control surface junction.
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Figure 34. Theoretical and Experimental Pressure Distributions for Partial-
Span Flap Deflected by § = 10°, o« = 0°, at M= 0.60 and k = 0

Rectangular Planforms Having Full-Span Control Surfaces

Two rectangular planforms having aspect ratios of 1.0 and 2.0 were tested
in combination with a 40% chord flap for various values of reduced frequencies
to obtain hinge moments and lifts due to the control surface motions. The
experimental data are reported in reference 20. Each planform had a small gap
along its hingeline that may have a small influence on the pressure distri-
butions in regions near the hingeline.

Experimental and theoretical values of hinge moments and phase angles
as a function of reduced frequency are presented in figure 35 for the aspect
ratio 2.0 planform. The theoretical hinge moments appear to agree with the
experimental values; however, there is a discrepancy in the predicted phase
angles that may be due to the open gap at the hingeline.
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Figure 35.~ Theoretical and Experimental Hinge Moments and Phase Angles for an
Oscillating Full-Span Flap AR = 2.0 Configuration of WADC TR 53-64

Comparison of wing 1ifts and phase angles are shown in figure 36.
There is good agreement between the theoretical and experimental results
over the entire range of reduced frequencies used in the tests. Conse-
quently, it appears that wing 1ift is not greatly affected by open gaps

at the hingeline.
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Figure 36.- Theoretical and Experimental Lifts and Phase Angles for an
Oscillating Full-Span Flap AR = 2.0 Configuration of WADC TR 53-64
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Experimental and theoretical results for the full span control
surface configuration of aspect ratio 1.0 are shown in figure 37 and
figure 38. Again, the theoretical method appears to predict reasonable
values of hinge moments and total 1ifts; however, the predicted hinge
moment phase angles deviate from the experimental values and the dis-
crepancy may be due to the open gap at the hingeline.
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Figure 37.- Theoretical and Experimental Lifts and Phase Angles for an
Oscillating Full-Span Flap AR = 1.0 Configuration of WADC TR 53-64
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Figure 38.~ Theoretical and Experimental Hinge Moments and Phase Angles for an
Oscillating Full-Span Flap AR = 1.0 Configuration of WADC TR 53-64



The difference may also be caused by trailing edge flow separation
that could have been experienced during the test since there is a very
large adverse pressure gradient at the trailing edge that might not
have been maintained during the experiment. (see page 315 of reference
24 for the pressure gradient plot of the NACA 0010 airfoil section used
in the experiment.)

Effect of Hingeline Gaps on Chordwise Loadings

A theoretical study has been made (reference 21) to investigate the
effect of hingeline gaps on chordwise pressure distribution, and the
results are shown in figure 39.
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Figure 39.- Non-Dimensional Lift Distribution (reproduced from reference 21)
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The study configuration is composed of a pair of two-dimensional equal
chord 1ifting surfaces that are placed in a coplanar arrangement. The
Teading surface is at a zero angle of attack and the trailing surface is
given an angle of attack by rotating the surface about its leading edge.
Chordwise pressures are obtained for various separation spacings in steady
flow.

For a zero gap spacing, the loadings produced at the junction of the two
surfaces exhibit the typical symmetrical logarithmic singularity identified
for a discontinuous downwash distributions of a two-dimensional wing-control
surface combination. As separation begins, the loadings on the wing near the
wing trailing edge change from a singularity characteristic to a loading that
becomes equal to zero. However, the Toadings near the leading edge of the
control surface change from a logarithmic characteristic to that of having an
inverse square root singularity that causes a higher loading to exist on the
control surface for the open gap condition than for the zero gap condition.

Large separation distances between the surfaces result in loadings that
are vastly different from the zero separation case. However, small separa-
tions affect the pressure distributions only in localized regions near the
hingeline. It appears that the zero gap theoretical method will provide
reasonable predictions of total 1ifts and moments for configurations having
small hingeline gaps.

Side-by-Side Control Surface Configuration

The side-by-side control surface configuration is shown in figure 27 for
which unsteady pressures are obtained for various combinations of flap de-
flections. The experimental model had small open gaps at the hingelines and
at the side edges. Reference 17 provides no information to define the exact
dimensions between the control surface side edges and the pressure measuring
stations located in the vicinity of the side edges. The spanwise location of
the experimental pressure chords were established by measuring the pressure
chord locations off the planform drawing.



Figures 40 and 41 present comparisons of theoretical and experimental
results for a mode shape in which both flaps are oscillating with the same
phase and amplitude and the wing is maintained in a stationary position.
There is good agreement between the theoretical and experimental results in
all areas except in localized regions near the hingelines. The experimental
values are less than the theoretical values forward of the hingeline and
slightly greater than the predicted values aft of the hingeline. The varia-
tions near the hingeline are attributed to the open gaps at the hingelines.
Even though the comparisons deteriorate in regions near the hingeline, it
appears that the total 1ifts and moments may be estimated within reasonable
bounds for configurations that have small open gaps at the hingelines.
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Figure 40. In-Phase Pressure Distributions for Both Flaps Oscillating with
the Same Phase and Amplitude. Ai £ " 0.82°, A P 0.82°,
A,=0° k=0.372, andM=0 ' 0.7



Figure 41. Out-of-Phase Pressure Distributions for Both Flaps Oscillating

Figures 42 and 43 present comparisons of theoretical and experimental
pressure distributions for a mode shape in which the outer flap is oscillating
and the inner flap and wing are maintained in a stationary position.

\

Figure 42. In-Phase Pressure Distributions Resulting from Motions of OQuter
Flap. Ai £ = 0°, A0 P 0.66°, Aw = 0° k =0.372, and M= 0
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Figure 43 .~ Qut-of-Phase Chordw1se Pressure D1str1but1ons Resu1t1ng from Motions
of Outer Flap. A1 £ = 0°, Ao f. = 0.66°, Aw- 0°, 0.372, and M=0

Again, the only area where the comparisons deteriorate is within
the hingeline region and is probably due to open gap effects at the

hingeline.

Swept Delta Wing with Leading and Trailing Edge Controls

The planform configuration shown in figure 44 represents the experimental
planform of reference 22 where experimental studies were accomplished to
investigate use of active controls to suppress flutter. Steady state hinge
moments obtained within this investigation were reported within reference 23

and are reproduced in figure 45.
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Two sets of analysis results obtained from the present procedure are
superimposed on the test results of figure 45. The set of results denoted by
the symbol < represent the solutions obtained using standard flat plate
boundary conditions. The set of results denoted by the symbol ¢ represent
the solutions obtained using local linearization of boundary conditions to:
include effects of incremental velocities due to thickness distribution as
described in Appendix C.

It appears that the application of local linearization of boundary con-
ditions does affect the hinge-moments of the trailing edge control surface.
However, there is only a slight change in hinge-moments of the leading edge
control surface due to local linearization effects.

The analytical results appear to correlate well with the experimental
data for the Mach range of interest. The comparison tends to deteriorate as
the Mach number approaches 1.0 which may be due to shock effects that may be
caused by the control surface deflection.



CONCLUSION

A theoretical analysis and computer program has been developed for the .

" prediction of unsteady 1ifting surface loadings caused by motions of leading

edge and trailing edge control surfaces having sealed gaps. The program has
been developed around a-systematic solution process where the discontinuities
in the downwash distributions are separated (and handled separately) prior to
applying standard 1ifting-surface solution techniques.

“Theoretical results are presented to demonstrate the versatility of the
program capabilities. Comparisons of theoretical and experimental data are
presented for five wing-control surface configurations. Two of the experi-
mental configurations had sealed gaps at the hingelines, and two configura-

tions had small open gaps.

The comparisons indicate that reasonable pressure distributions are ob-
tained for the sealed gap cases, but there are moderate differences near the

hingelines for the open gap cases.

Pressure distributions and hinge moment coefficients obtained for all
trailing edge control surface configurations appear to approximate the experi-

mental values within close tolerances.

Hinge-moment coefficients obtained for the one leading edge control sur-
face configuration does not appear to be sensitive to the use of local
linearization of boundary conditions. Analysis results correlate well with
experimental data for most of the Mach number range except for Mach numbers

in the close vicinity of 1.0.
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APPENDIX A

DEVELOPMENT OF PRESSURE EXPRESSIONS THAT SATISFY THE BOUNDARY CONDITIONS ON A
TRAILING EDGE CONTROL SURFACE HAVING A SWEPT HINGELINE

Pressure expressions are formulated such that the boundary conditions are
exactly satisfied and the residual downwashes that remain after subtracting the
downwash discontinuities are smooth and continuous across the side edge of the
control surface. The analytical procedure used to obtain the expressions is
the asymptotic expansion process suggested by Landahl in reference 3.
Solutions of the boundary value problem obtained by application of Green's
theorem provides the required change in boundary conditions across the hinge-
l1ine and side edges such that subtraction of the discontinuous kinematic down-
wash distribution result in residual distributions that are smooth and
continuous for which standard 1ifting surface solutions may be readily applied.

The analysis coordinate system is shown in figure 46 where the X,y
coordinates are referenced to the inboard side edge of the hingeline.

WING

WING

HINGELINE

CONTROL
SURFACE
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™
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Figure 46 : Analysis Coordinate System

93



94

The Linearized boundary value problem is developed in terms of the
pressure perturbation Cp = P'e’kt where the pressure magnitude satisfies
the equation of flow

7p Poe — 29kM2P.. 2M2F =
and boundary conditions on the surface of
- 20, [6(ex ) + 2ik - k2(Gx) UH]  for F2x

P = (A2)
0 =~ === === === ===« == for X < x

0 0 0
o _la . 22 _1 @ (A3)
9X B Ax, ’ 3X2 B2 I 2
and the equation of flow becomes
P 1] 1] ikM? 242F =
+7 +P -2 ‘ET"FQ + k2M?P = 0 (A4)

Xo*o  Yo¥o Zo%0 (¢

The terms of the boundary condition are modified by letting

X-y tan A

x
]
>

il

B(x,-y, tan A/8)

e(xo—yo tan A])
and noting that

5(ax) =-% §(x)



Thus the boundary conditions are given as

- 20y [%-G(XO-yotan A]) + 2ik - kZB(xo—yotan Ai)] X > X

z
o 0 == ==== =20 co2cc@2ac2e0===2=mn2m==-= for x_ < Xx (A5)
0 Co

The first derivative term of (A4) is now removed by defining a variable
y defined as

ikM2x
P =exp( 8 o) L (A6)

which will change the flow equation into the form

k2M2y
P + P + + =0 (A7)
xOXO yOyO ZOZO B2

and provide a boundary condition definition of

3 2
-ikM xo/s

- 20, [%6(xo-yotanA1) + 2ik - kzsz(xo-yotanA1)] e Yo 20
L -
azo
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(A8)

To study the 1ifting surface problem in the vicinity of the corners all
coordinates are scaled by ¢
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that modifies the differential equation into the form of

2 k2M?
ax T ¥y F¥z et g =0 (A9)

and provides a boundary condition definition of

—_— e oz
-20y [égﬁ(x-ytanA1) + 2ik - kzeB(x—ytanA1)] e ikM?ex/8 y >0

oY _
5% -
O Tt y <o (A0)
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We now seek solutions of the form

pEgg et F Y eF Y et b oL (A11)

and expand the exponential in the boundary condition and set to zero the
collected terms of equal powers in €. We finally arrive at the following
boundary value problems whose sum of solutions will satisfy the original
boundary value problem.

[ v2 Yo = 0
1 <~ _ 7 ' 7
oY - 20 [—-6 (x -y tan A )] ------- y>0
3__o - HLB 1 T (A12)
Z 0 == e e e e y<o
L
[v2 ¥y =0
) o Gk MX - o ] =
Efl. i 20, [2 ik 2z (x -y tan A))| ¥y2>0 (A13)
9Z D == = c e et e y<o
|
- k2 MZ
Vi = - TE Yo
2 k2 M2 Y —
awz - 2@H [—-—-—s—-——- kK B(x-ytanA ) - ——TG(X‘.YtanA] )] y>0
oz 0 = = = == = @ = = = = 0 = = © = =« = = = = = y <o
| (A14)

Since the boundary value problems contain (or can be made to contain) a
Laplace equation V2y=0 then use of Green's theorem may be readily applied
to obtain solutions of the form



ST

= .1 W(x,y,0) dxdy
v(x.y,2) = - 2m f f 8z _ ((x-.f)z + (y-y)2 + Z;YE
- -~ z=0 (A15)
where
W (X,y,0
3x Z=0

represents the surface boundary conditions on the Zz=0 plane and the Green's
function (developed from the method of images)

(67 + 917 + @)% (R + ) + @D)F

v=

v satisfies the conditions of

. on z=0

V2v = - AT8(X-X,Y~Y ,2-2)

Integration of (A15) is accomplished in rectangular coordinate system
that have coordinates defined within figure » and the coordinate subscripts
and bars are removed with the understanding that these are scaled coordinates
and that the solution will be finalized in physical coordinates at the end of
this section.

Solution of the Zeroth Order Problem

The zeroth order boundary value problem is given as
" g2 -
P.D.E. VY, = 0

oy, (K.§,0) 20y
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Substituting the boundary conditions into equation (A15) gives

O, p~ p &(x-y“tanA,)U(y*)dx"dy~
IP(x,yz)%—Hff (xytanh; JUly")dx"dy (A16)
A (S S R R &

Changing the lower integration 1imit of y~ (due to U(y‘)) and
the x“ integration produces the expression

Yo(Xsys2) = -§ / dy~ (A17)
0 ((x-y"canf&])2 * {y-y)? + zz)

Sy

substituting x=x-xc+ytanA] in (A17) yields

2}

lPO(Xsy,z) = f d_y‘ 1
’ (((X-X ) + (y-y~) tanA )2 + (y-y’)z + 22)’5

Expanding the terms in the radical provides

[
0

((1+tan21\1)(y’-y)z-z(x-xc)tanA](,y‘-y)+(x-xc)2+zz)’/2

3P

Yo (Xs¥,2) =

that is integrated to yield the function

ey
= 1 % ; %
Yo(Xsy,2) = + —= "B RY iin[(a)2 (an* + 2bn+ ¢)* + an + b] + Y, (Regular)
Y (A18)



where

a = (1+ tan? A])
b=- (x-xc) tan A,
= 2 2

c = (x-xc) + 2

The divergent upper limit is handled in the manner of Landhal and the
expression is reduced to the form of

Yo (Xs¥,2) = E*—'(—l—;ﬁ n [(a)’/’ (x2+y2422)*% - (y+xtanA1)] + ¥y (Regular)  (A19)

where x,y,z are scaled coordinates. A check may now be made on whether the
boundary conditions are satisfied. The boundary conditions on the 2z=0 plane
are evaluated as follows

9z B (3)1/2

MWy O4 (a)v/2 (x2+y’l+zz)1/2 + (y+xtanA]) (a)%z
a(x2+y2+22) - (y2+2xytanh, +x2tanA, ) (x2+y2+22)%

reorganizing this expression by inserting a=(1+tan2Al) into the denominator
of the bracketed term we obtain

e )
(

1
9z 8 (a)® (x2+y2+zz)1/2 x-ytanA1)2+az2

. . u _
and noting that llT XZFE - 78(x) then

Bwo

az

" (a)?

- 2
% l(a),/2 N y(1+tan A])
Z+0

= 1 ” nG(x-ytanA])
[yl ((1+tan2A1 )) ’]
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3y
= | = - 20, §(X-Ftann}) U(F) (A20)
o g

which is identical to the scaled boundary conditions of equation (12-A) and
thus the function of equation (A19) 1is a valid solution of the zeroth order
boundary value problem.

Scaled coordinates are used in equation (A19) and the expression may be
returned to physical coordinates by replacing

™ [N

X by %E s y by %-; and z by

i B% = B% + tan?A

LosYion]]

tanA1 = — 3, a'=s

to provide the zeroth order pressure expression on z=¢0 of

-6 1 2+
lPo - __H_ n [(§2+Bzy2)/2 - wﬁl] + wo(Regu]ar) (A21)
8 B

Solution of First Order Problem

The first order boundary value problem in scaled coordinates is defined

by
r-'V"-xp] =0
-20, [Zik - iKM2R a(i-ytanA])] y>0
B 32
oz U y <0 (A22)
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and is divided into two separate problems corresponding to the two terms within
the boundary condition statement. The first part of the first order problem is

defined as

vy, =0
1A
I

¥

- 2¢, [2ik] U (X-ytan A]) u(y)
z=0

Inserting the boundary conditions into equation (A15) and changing limits
due to the unit functions provides the expression

=}

2041k £ e

~ o~ Ay H dx“d

5.3 ) s

oy tanAl ((')Z-x’)2+(9'-y')2+'iz) (A23)

A straight forward integration of this equation followed by a transformation
of the coordinates into physical coordinates Z=0 yields the solution

_ 0,21k e amanls o1 (KXQ) BZy+XtanA
ew]A(i,?,z) -- 1y fin[(xz’fiszyz)/2 - X] + —= Ln[}§2+32§2)% _(}_Z______#)]
B B

(A24)
The second part of the first order problem is given as

B V3p; =0
B
My 20,ikM> 3
57 v = g 5(x-ytanA1) u(y)

Again inserting the boundary condition into equation (A15) and performing
the indicated integration yields the expression for the pressure term in
physical coordinates on z=¢ plane given as
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0,,1kM? tanA 254+%
ey = A (RtanA+§8?) gn|(R2+8252)% - (ﬁ-xiéggnﬁ) (A25)
B n8%83 B '

The above solutions of the first order boundary value problem have been
obtained using the same techniques of Landahl in the evaluation of the integral
at the divergent upper limit.

Solution of the Second Order Problem

The definition of the second order boundary value problem given in scaled
coordinates is

k2M?
2 = -
(; l‘!)2 B2 IPO
31})2 k2M¥X2 /x ~ K2M2R e
37 2o = ZOH, 983 6(x-ytanA]) -2 - U(x-ytanA])
+ k2B(X-ytanA;) U(X-ytanAy)} U() (A26)
=3 .

The differential equation is a Poisson equation whose solution requires
some added manipulations over the procedures used in obtaining the preceding
boundary value problem solutions. The technique applied here to obtain solu-
tions of the second order problem is one of redefining the boundary value
problem into separate parts and obtaining individual solutions whose sum will
satisfy the original boundary value problem.

We first seek solutions that satisfy the following boundary value

problems
[ PL k2M2
Vi, T = - T Y
PL
v, _ (A27)
9z =0
z2=0
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F Vzwz

AL,

’ 2MuT2
) @Hk M*X

T |y B

Vi §(X-ytan;) U(Y) (A28)

Z=0

B

i- V2w2 =Q

asz

02 |z

kZM*X
B

= - 4o, U(i-ytanA]) u(y) (A29)

Z=0

F Vzwzc =0

5% = 20y kZB(i-ytanA]) U(i—?tanA]) u(y) (A30)

Z=0

Solutions of the last three boundary value problems may be obtained in the
same manner that was used to obtain the solution of the zeroth order boundary
value problem. Insertion of the boundary conditions into equation (A1l5) and
performing the straight forward integration will result in the desired solutions
which will be summarized at the end of this development.

Solution of the Poisson equation and its associated boundary condition is
obtained by seeking a solution of the form

such that wzp is a solution of

2Mm2
V2¢2P = - kBg Y

0
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Once wZP is obtained then the boundary conditions developed by wzp are

determined by evaluating the function 1im P /as
Y ,z,*o(axpz/az).

Then a new boundary value problem is formulated such that wzq will satisfy

i Vszq =0
oy a"’2P
Y3 =-lim o

i Z+0 Z+0

Thus the sum of wZP and wzq will then satisfy the differential equation

P k 2M2
9= g2 "»’0

2
thz
having boundary conditions

P
3, 9

In order to simplify the expressions a coordinate transformation is made
such that new coordinates are defined along and perpendicular to the hinge
line as shown in figure 47 .

CONTROL SURFACE

x|

\
\
§
’

Figure 47 : Rigid Rotation Coordinate Transformation

104



>
1]

X = X cos A - ¥ sin A X cos Ay + y sin Ay
y = X sin Ay + ¥ cos A or y = - X sin A+ y cos A (A31)
| z=12 | | z=12 _

Using the above relationships it can be shown that

V2 (X,y,2)

<l
N
—
X
<?
N?
~

11

(§2+y2+22)1/2 z (’;('2+y2+'x1)1/2 = R

and that the solution of the zeroth order problem may be expressed as

L i eHcosA]

Uo(XsYs2) = - —=—n [R -y] (A32)

We now seek a solution of Poisson's equation by developing an expression having
all the required characteristics that remain after performing the three co-
ordinate second derivative operation. One such expression that may fulfill
these requirements is

wzp = AR? £n (R - §) + BR2 (A33)

where A and B are to be determined such that

vy, =C o R- )
where C = ( 32 ) 7B
now
2, P _ 2(p2 7 2p2
v2y,” = A v2(R2a(R - §)) + BY2R (A34)
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and noting that for a general function (uv)

V2uv = uv3v + 2(vu) v (Vu) + v s V3y

then

vzwzp = A [szzzn(R-y) + 2(VR?) - (vzn(R-i)) + Zn(R-y)szz] + BV2R?

now V2Ln(R-y)=0 since this is a solution to the zeroth order problem, also
V2R2=6 and 2(VR2)-(V£n(R-§))= 4. Therefore, the expression becomes

Als+620 (RY)] + 68
6A fn (R-y) + (4A+6B)

P
V2¢2

and constants must take on value of
=C. =.C
A 6’ B 9

to satisfy the differential equation. Finally, the pressure expression that
satisfies the Poisson equation is given as

P 2m2 @HCOSA Rz — 2
Py = (kBT ) — ] e o Rey) - F—;— (A35)

or

o
1

b' = B [3ea(r7) - 2]

The boundary cond1t1ons generated by wz are now determined by performing
the differentiation of wz with respect to z and evaluating the limiting
functional value as z - 0.



P
) [ Z
2 -C 1oz -y) - Rk ] ) |
= 53 {2z [3en(R-y) 2] + 3R [ R-Y. R]]
= % LSEILVL(R-S;) -4z + 31233'5 ] el

The limiting value of the first two terms as z -~ 0 are identically equal
to zero and we are left with the limiting value of the last term.

P
L) . c{ZRY_C ;. ZR R+Y z
Tim -B—-Z-—-' 1im £ -R—_i) a3 1im -(R—_y-—)- RAY 6 Tim (_P+__2)R(R+.Y)
70 740 70 70 4
o e [ = = L .
= Ens(X) (x*+y?)* [Geye)% + y]
0 ------- y<o
= Lrs() 1Yl L1yl + 7] {
28(x)|yl ---- y>0
P
oy ——
lim —2 = Zns(Ry2U(Y) (A37)
?_>0 oz

In summary, the function
o« S [santr) - 2]
is a solution of
v2p,’ = Con(R-¥)

and produces the boundary condition given as

oY O, cosA
2 Poul — k2M2\ “H 1
= §6( x)y2U(y) where C ( ) 78

T1im
>0
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The next step is to find a function wzq such that it satisfies the
boundary value problem

v2y,d = 0
q
Y — —
2 = - SV (A38)
z |20 3
-

Following the same procedure that was used to solve the zeroth order prob-
lem results in the expression for wzp given as

AR %[-3- W - [5— - %72] 2n(R-¥) + 72] (R39)

Finally, the solution of the Poisson equation

— _ k2Mm?
Vi = - gz Y

having zero boundary conditions
a$2
9z 7=0

is given by the sum of solutions

PRETRATS

Ty = % (R-7)(RY) - 55 (4R? + iR + 672) (A40)
where

c - (K1) 2
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Cald e

The expression for ﬁé is separated into singular and regular expressions
that are functions of the scaled and transformed coordinates

T, = $R2-72)n(R-¥) + T,(Regular) | (Ad1)

The expression given in physical coordinates is obtained by first rotating
the coordinate system back into the scaled coordinate system (where ‘o' sub-
scripts are used to denote scaled coordinates) then transform from scaled
coordinates to physical coordinates.

x
]

1 1
Y24+v2472Y% = 24y 24, 2Y%
= (X24y2+2%)% = (x *+y,2+z ?)

y = x°s1nA]+yocosA]
The singular part given in scaled coordinates is

— 1

wz(xo.yo,zo)=%<Fx02+y02+zoz]-[xosinA1+yocosA]]Z)Zn[[x02+y°2+zoz]4-[xosinA]+yocosA]]]
(A42)

The expression in physical coordinates is finally developed by applying the

scaling transformations

=0 - _ tanA
=0, tanA] B

m [
N
n

™ {N2

Thus, the singular part of the pressure expression obtained from the solution
of the Poisson boundary value problem is given as

0,k 2M? __
S (R:50) = o (RFtant) 2o |:(>?2+BZ.V2)1/’ - (B—Yi'%"a—"")] (R43)
m

The rest of the solutions required to satisfy the remaining second order
boundary value problems defined by equations (A28) , (A29) , and (A30) may be
obtained by inserting the boundary conditions into equation (Al15) and perform-
ing the indicated integration. The solutions obtained and expressed in
physical coordinates are summarized as follows:
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BOUNDARY VALUE PROBLEM
IN SCALED COORDINATES.

vzsz =0

1) kZM“

== - H G(x -y,tana; JU(y,) (A42)
%o he ° -

Solution given in physical coordinates is

o k*M*tan2A
Ezsz = . n — [(i-?tanA)2 2 xtgnA + YB) ] £nfR,-¥,1 (A45)
4.”8285
where
o ~2 12 2+XtanA
R, = (R*+8%72)% 5 y, =-§—f§$§ﬂ—
vzsz =0 BOUNDARY VALUE PROBLEM
(N SCALED COORDINATES.
szB k2M2
= - L - A46
2, 4047 xoU(x4-y tanA;)u(y,) (A46)
_ ZO=O
Solution in physical coordinates is
20,,k2M? 2
ey =~ |- (5-gtann)? - L (%2-55tan) |enlR -y, ]
2R B
ZOHkZM2 . N
- _TB?— Xy «&’L[RZ-X] (A47)

110



=

v2y,° = 0 BOUNDARY VALUE PROBLEM
IN SCALED COORDINATES.
c
oy
- 2 - -
%z, 20,k B(Xo yotanA])U(x0 yotanA])U(yo) (A48)
ZO=°

Solution in physical coordinates

O k? Oyk? w2
H A e ~
ezwzc 2:8 (X-¥tanA)2en[R -yz] - (y ;a" - xy).en[Rz—x]

The pressure coefficient that satisfies the boundary value problem of
equations (A1) , (A2) may now be expressed as a sum of the individual
solutions

'1k2:i)

P(X.¥,0) = (y tev te’y,) e (A49)

P(X,¥,0) C]-ﬂn[(§2+32y2)1/2 - (M):l + CZy ,Enl:(;z.,.szyz)’/z _ i'] (A50)

B

O
where C1 ---——[1+21k(x ytani)-~ 1—-ISM—E-a-M-(xtanA.+y82)- (i’-S"tanA)2
m8 g? B? 432p>
2MY 2
» sl [('i-?tanA)"- 2(Xe2nh 45) ]
4 g2 B* B

33
un

ikM2X
o 2 ( B )
- (X-Ftanh)?-(X*-Xytanp)| - tanh)
B2 2g?

0 a2 ) (ikMZX)
€2 = - n—“[zik + 2"6’2 - kz)x + kZtand y]e B2
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The expression for P(x,y,0) may be simplified by expanding the
exponential, carrying out the indicated multiplication and collecting terms
that are linear in x and y. The resulting expression then becomes

0 , -
P(X,¥,0) = - —E [1 + 21k(g-g ) + %‘i(g-gc)] 2n [(§2+32y2)/2 - Bzx+tanA]
B

B 8
- Btk - k(e-e) ] § e (Resmtg)® - 5] (as1)

The limiting value of this expression for A=0 1is equivalent to the
expression developed by Landahl (reference 3 ) for the rectangular non-swept
control surface. The above expression for A=0 is

0 . %
P(X,y,0) = - _H 1 + 2ik(E-E ) + 1_k_M_2_2(§_:_§_c_)_ n ((g-g )2_._629-2)'2 _ By
78 c 8 C

-%[Zik-kz(s-ac)] ¥ en [((a-sc)%eziz)’/z - (a-ac)] (As2)

Thus, the expression for P(x,y,0) appears to have the necessary
characteristics to provide a proper solution of the swept hingeline boundary
value problem and compares favorably with the widely accepted expression of
Landahl for the zero sweep case.
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APPENDIX B
.DEVELOPMENT OF PRESSURE DISTRIBUTIONS TO SATISFY THE BOUNDARY
CONDITIONS FOR A SWEPT LEADING EDGE CONTROL SURFACE

Pressure distributions are formulated using the asymptotic expansion

process suggested by Landahl (reference 3 ). The analysis coordinate system
shown in figure 48 represents a segment of a swept wing leading edge having
a control surface that oscillates about a hingeline aft of the leading edge.

\FF}\‘ } -~y
A leading edge
sweep angle

X = E-%ys

CONTROL
SURFACE

y = n-Yg

Analysis Coordinate System

Figure 48:

Solutions of the mixed boundary value problem are obtained using the
linearized partial differential equation of flow given as
2, - 23 LM24_ 2M24 =
B dxx + ¢yy + ¢,, 21kM ¢z *+ k*M*¢ = 0 (81)
The motion of the control surface is assumed to be sinusoidal and is
defined in non-dimensional coordinates as

o e oy ikt
Zc = OH(x xc) e
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The boundary conditions resulting from the control surface motion are

0z
%% = -:?-+ ikzc for y<0 on 2z=0
ox x>y tan A
%?: 0 for y<0 on 2z=0 (B2)
x>y tan A
¢=0 X<y tan A

(ahead of leading edge)

The first two expressions may be combined into a single expression for the
change in boundary condition across the control surface side edge

¢, = (z,_ *+ ikz.) U (y)

X

Oy [(l-ikic) + ikx] u (y) (B3)

¢,

where U(y) = (]) 5:8

A transformation or scaling of coordinates is made to simplify the differential
equation by defining

X = X/Bs Yo=Y zp=z

that results in the flow equation

2ikM? 22 (B4)
¢ + ¢ + ¢ -~ ¢, +kM¢=0
X%  Yo¥o %% B "X

In the new coordinate system the equation for the leading edge becomes

xos yo tan A

tan A

or Xo =¥y =pg

0
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Defining a new angle, A], such that tanA]-t;nA then the leading edge

equation becomes xo=yotanA] and the boundary conditions in the new coordinate

system are
$=0 for x <y,tani; on z=0
% - (A+vx _JU(y.) for x >y tanA, on z=0 (85)
0z 0 0 o070 1
where A = 9,(1-1kx)
vV =06y ikB

The first derivative term in equation (B4) 1is then removed by defining a new
variable, vy, defined as

1, M2
ikM xo/B

$(xgs¥g22,) = € W(XysYg924) (86)

Insertion of equation (B6) into (B4) results in the transformed differential
equation

2

kM -
w"o"o + wyoyo + wzozo + (e ) p=0 (B7)

The transformed boundary conditions are then defined as

y =0 x0<yotanA] on z=0
-ikM2x /B
%%E = (xtvx )e ° uly,) for x>y tand, (88)

In order to study the problem in the vicinity of the leading edge corner all
coordinates are stretched such that

(X3¥0520)01d > (€X52€Y3€20) pay
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In terms of the stretched coordinates the boundary conditions become

<
n
o

x°<y°tanA] on zo=°

-1kMzex°/B

%%; = e(Atvex e uly,) X >YotanAy on z =0 (89)

Expanding the exponential and collecting terms of e"  the second boundary
condition is then defined as

A CARR VR SoRRICARLICY (810)

The variable ¢ 1is also expanded in a series given as
Y=Yyt Yge toYpe® +oe oo (B11)

and inserted in the differential equation and boundary conditions terms of
1ike powers in ¢ are collected and define boundary value problems for which
solutions are to be obtained whose sum will satisfy the flow conditions at
the leading edge corner.

Vzwo =0 (zeroth order problem)

wo =0 on zo=0 xo<yo tanAT

Wy -

52;- =0 on z,=0 X%y, tani, (B812)
Vzwl =0 (first order problem)

w] =0 on 2,0 X,<Y, tanA1

Wy

5;; = AU(yo) on z =0 x>y, tanh, (B13)




k 2M2 :
Vzwz = - (—Eg—) ¥ (second order problem)
¥y, =0 on 2z=0; X, <y, tani,
oy 2
5E§' = (v - 1k2 A) x,U(y,) on z=0; Xx,>y, tani, (B14)

Solution of the zeroth order boundary value problem results in an
expression that is given by

by = c[(——]——;)+ ik (i—ytanA)’/z] (B15)
(X-ytanp)?/ g2 '

where the coefficient, C, can only be determined by a global integration
over the planform. Since the function contains a square root and inverse
square root term that are available in the main 1ifting surface solution then
this zeroth order solution will be ignored.

Solution of the First Order Boundary Value Problem

A rigid rotation of coordinates is made such that the coordinates are
parallel and perpendicular to the leading edge as shown in figure 49 .

™, -

T

WING
(y<xtanA])

CONTROL
SURFACE
(y>xtanA1)

X y (xo-yotanA])

0

Figure 49: Rotated Coordinate System
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The new coordinates are defined by

X = xo.cos A] - Y, sin A]
Yy = X sin A.I + Yo €Os A]
z =2z, (816)

and the old coordinates given in terms of the new coordinates are

X =xcos Ay +ysinA

0 1 L (817)
Yo =~ X sin A] +y cos A]

z, =z

The above transformation is a rigid rotation without stretching so that
the orthogonality of the axes and scales are preserved. Thus the transformed
first order boundary value problem is given as

L2 ¥ V1. =
Tax ¥ ]yy +7,,=0

¥p = 0;  Xx<0 on z=0 (B18)

oY

1 _ _ . -
Fr o AU(y xtanA]), X>0 on 2z=0

A Fourier transform in the y direction is applied to reduce the problem to a
two dimensional problem with a parameter. The transformed differential
equation becomes

¥y tY, -s?YP, =0 (B19)
]XX .'ZZ 1

Transformation of the off wing boundary condition yields

EH =0 X<0 on z=0



The second boundary condition is transformed by

oo

- _ A -isy
Y, = e U(y-xtanA,)dy
' T d ‘
E" = A - f e-]S.Y dy = ._-A—T/‘ on Z=0
1, (2w)* is(2n)*
w xtanf, ' xtan

The convergence at the upper limit is circumvented by considering s to be
complex having Imag(s)<0. Then the boundary condition is

¥ = ——-J&—j; e isxtandy . o6 on z=0 (820)
z is(2m)*
Following Landahl in the construction of a solution of equation a trial

solution is assumed to be of the form

X . .
-|s|ry-is(x-x")tanA 0
AUI e 1 1 1 1

cos . %
(ry)

dx” (B21)

== 00

= -1 Z— 2= ‘2+
where 01 tan (x‘) and " X Z

2

The quantity A 1is determined by having EH satisfy the boundary con-
dition on the 1ifting surface (equation (B20) ). Thus, the above expression
is differentiated with respect to z by using the expression for the derivative
in polar form

3 COSO] 3

9 ! 9 : d
9z - " 290 * 51"@1 5r1
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x ~-|s|ry-is(x-x")tanA
. 5:./' e ] L. 8, si 1 4 cosd ine, } dx~
7 5 32 cos@; siny— + cosz— sing, | dx
v ry
x  -|s|ry-is(x-x7)tanA, 0,
e . ha
- AISlJr = sing; cosy— dx (822)

The second integral vanishes for z»0 since e]=o or 7. The derivative
becomes

3y, A -isxtandy X e-|s|r1+1sx tani (38,
5z -7 Tim 32 sin—— dx (B23)
Z=0
z»0 \ - g
sin 5-61
The apparent singularity is removed by adding and subtracting -———372——
within the expression to obtain "
3, -|s|r]+isx’tanA] sing 3 8 -1sxtanA]
lim — = - —-11m - 1. .z 1 dx
9z 3/2
Z>0 220 "
A .. X sin-% e] -isxtanA]
- -2—]1m f —r—?/—é—dx ]e (B24)
z+0 1

Landahl has demonstrated that the second integral vanishes for z-+0. Since
6120 for x>0 and 6]+ﬂ for x<o0, then the limit as z»0 of the right
hand side becomes



-|s||x"[+isx“tanp, R ]]
= dx~

-isxtanA o[
g

-13
IxI/Z

® [e-x‘[|s|+1stanA1] _ 1]

_ A -isxtanA] Le j 825
=+he f 7z dx (825)
0 x‘
Integrating this expression by parts yields
Y- -isxtanA -x[|s|+istanA, ] -%|%
— =+2e ! -Z[e L | PSS
9z |.__. 2
z=0
0
® =X [|s|+1‘stanA]]
-2 [|s|+istanA]]-f e = dx‘] (B26)
0 X
T 'ax’ - % 2 16

e dx” _ -at = (T

Since f —T-Z f e dt (a)
0 X 0
then the expression for the derivative is
-1 -isxtanA
# = - A (-rr[|s|+1'st:an1\.|])1/2 e ! (827)
z=0

This expression for the derivative must be equal to the boundary condition
equation (B20) that results in evaluating A as

A= - A (328)

a 1‘s-:r(2[|s|+1'stanA]])1/’
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Finally iﬁ becomes

-isxtani, X ~|s|ry+isx'tank, 5
- Ae e ]
g = - cos ( ) dx' (B29)
L ins(2[|s|+istanA]])k :Zr r']”2 z

Taking the inverse transform of equation (B29) and interchanging the order of
integration yields

) . A . _
cos (?l) -1y e75[y+(x -x)tanAyJ-[s|ry

A N
v - - > ds| dx' B30
1 o3l 2 _;[ i coniy is[|s|+1‘s1:an1\]],2 (830)

Now, with p =y + (x' - x) tan Ay, the inner integral becomes

e

F(o) = jn

..oo_]"Y

- ds (B31)
is[]sl+1’stanA]]2

The integrand contains a non-integrable singularity, however, this integral may
be evaluated if the singularity is softened by first taking a derivative with
respect to p

iy isp-|s|r
F' o) = f e ds (832)

o iy \/|s|+istanA]

Then F'(p) may be evaluated for the limiting case of T1im F'(p) and
obtain ¥

® is -lslr]
Flo)= [ =2 ds (833)

S Vls|*istan

where the path of path of integration is along the s(Real) axis.




o isp-|s|ry 0 isp-|s|r
e
ds

F'(p)|=f == ds + f
o \/s+1stanA] - ‘Vs+1stanA]

or

o 1Sp-sr -1Sp sry

F'(p) = f ——==ds +f
\/s+1stanA \/s 1stanA
j‘? A |: B =150 ]
\I 1+1tanA \h 1tanA]
Observing that ]+1tanA] = V]+tan2A1 eiA] = secaq@

expressions we obtain

iy

~ 'Sr] 1(Sp-A]/2)
ds

F'(p) = 2yE0sh; R, [f
=

-s(r]—1p)
ds]

F'(o) = 2ycosi R ['M/zf
"{p) = 2ycos 1 Re \[__

= ZVCOSA] Re e 1’-———' ]
r-|‘1p
. _afT
(S1nc .f *Va )
0

<ll

-iA,/2
F'(p) = 2/m [cosh, Re{e————}
VF]-ip

(B34)

then upon combining the

(B35)

(B36)
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Now F(p) may be obtained by an integration of F'(p) as follows:

F(p)

P -1A /2
2/ +JcosA Re[ ] . (837)
= [

[ -1A,/2

o]
= /T cosA] Re{e L Zin]-it |t=u }

|

-1A]/2 o
= 4T cosA, Imie \(r]-it |t=u

[ -1A]/2

= -4/T cosA, Im

—iA]/Z
\/ -ip + 4/7 cosA Im e \/rl-iu

(B38)

Since the lower limit, wu, 1is an arbitrary limit then value of u is
selected such that the second term vanishes; that is, we select u such

that

Im[e.ml/2 r,-1 ] =0 (839)

ISR &
now
lry
-itan

ry-iu =\,r12+u2 e r])

and

—
3
pmt—
(4]
t
-
-
—r
~
N
-
nad
1
ol
=
g’
[}

{m (e’ (} ))2]

o [l )
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Thus u 1is selected such that u = -ry tan A1 and consequently F(p) is
given as
(B40)

-iA,/2
F(p) = -4 ﬁFvaK]Im[e 1 VH?dp]

given in equation (B30) may be put in the form

and the expression for w]
2m - \/r]
or
X .
2 cos(e /2) -1A|/2 .
= n—f Im|e \/r]-'ip dx
and since Im(Z)= Im(x-iy) = - y = - Im(x+iy) then ¥ becomes

(B42)

X .
2 cos(e]/Z)\/cosA] 1A]/2 .
'JJ] = - n—f = Im|e \/r1+1p dx

y + (x'-x) tan A]

now replacing p by p =

X cos(O]/Z)
Y1 =- 1 - =
\,r
-0 1

Now let n =y cosA] - X sinA1 and ¢1 becomes

A, /2
Im [e 1 er]cosA]+i(ycosA]+(x‘-x)s1nA )]'d

(843)

=II>‘

X cos(O]/Z) ihy/2
f Im{e VﬁcosA]+1x'sinAl+in d
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The value of ¥y on z+0 may now be established by noting that 1lim ry = [x*]
. z+0
and that the integral from -« to 0 1is equal to zero since o, =w for x'<o

on 2z=0, thus the expression for ¥ on z=0 becomes

X
A, /2
= - 12r_'f W/ Im [e 1 V?cosA]Hx'sinA]Hn ]dx' (B44)

Rather than attempting to evaluate this integral in its present form introduce
a new function E} such that

1A /2 f Vx cosA]+1x s1nA]+1n

ﬁ' + 1¢] dx' (845)

and note that 2 has the same definition as before in that it is equal to the
imaginary part of the integral.

1A1/2 iA] -iA]/Z
Now with e = e . e
- . A V '+ '
¢1 + 1¢] - _2 ﬁ J‘ X'+ine dx
Vx'
0
iA, X -iA
. 2e pedne Log (B46)
— [ S dx
0

The integral may be evaluated by making a substitution of x' = %- and
integrating the expression by parts to yield

— ax | .t i it + \x
Uy Yy = ——{e \/x(x+a) + 2—£ag[ (B47)
\/x+a - \[
-.iA]

where a = ine and n =y cos A1 - X sin A]



The function w] is the Imaginary part of the equation and is given in
stretched rotated coordinates and may be expressed in the original stretched
coordinates by transforming back out of the rotated coordinate system by
using S

§ = X, COsS A] - Y, sin A]
Yo = ¥ cos A] - X sin A] = n
' iA
ﬁa + iw1 = - %A e L \/(xocosAi-y]sinA])(x°+iyo)cosA]
1y X +iy + y/x -y _tanA
+_0_£09 \lo 0 ﬂ ) 1 (B48)

Now making a new definition q = yO/x0 and replacing x
is physical coordinates, the above equation becomes

o bY X/Be where X

_ iA
¥y * iq;] = - %‘- %E' {e 1 cos Ay \R’I-B]q)(Hiq)

+

: T+iq + 1/1-8,9
19 4og Vit VARD (849)
2

V1tia - 1-8y
where 81 = tan A]

Then ew] may be obtained by evaluating the imaginary part of the above
equation

2 ¥ N .
epg = A Img- = z e \/(1-B]Q)(]+1Q)

V1+1‘q + {1-849

1+iq - \1-8,q

(850)

i
+ §g-tog
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After some maniupulations the expression becomes

— f'_-*ﬁ N1 ]
e = - -12T—A- %coszA] l-B]q [6] —h-g—ﬂ-+ sgn(q) ﬂt_g’——]-

i .
%tag \,1+q2 +1-8,q +V§V]-qu ]{‘t“q! +1 (851)
\’]+q2 +'|-3,Iq -ﬁ'\f'l-s.lq f‘,]q_qz +]J

'
wix|

Secondary Order Boundary Value Problem

The second order boundary value problem may be stated as

e
Vzwz - T 62 wo
¥, = 05 2=0 and X <y, tan A
a7 = Co %, Uy )s z=0, x, ¥, tan (852)
0
_ ikMZ)
where 62 = <v - )
v = iGHkB
A= eH(l - ikxo)

This problem is separated into two parts by the following procedure

22
Vzlpz = - kazd ‘Po
wz =0 on z=0; X, Yo tan A] (853)

awz
L-éz— =0 on 2z=0; x0>y0 tan A]



<}
)
<
N
1
(=]

wz =0 on z=0; XaYo tan A]

3y
5;g-= Cy X, U(yo) on z=0; X,>Y, tan A, (B54)

Since it is indicated in equation (B12) that ¥y contains functions that
do not provide for any change in boundary conditions across the control surface
side edge then it follows that Vo is a regular function and thus the solution
of the boundary value problem of equation (B53) must also be a regular function
that will be obtained from the global solution portion of the solution process.

A solution, Vs of equation (B54) is taken to be given as

X

C2 0
b= [ w(nygazg)dn (B55)
Blyo
where B] = tan A1

The function wz satisfies the differential equation since ¥y was obtained
on that basis. Also, $,=0 on z,=0 for X5<B1¥o since $1=0 for
x°<61y0. and

3\p2
T

z, = C2 (xo - Blyo) U(yo)

Z=0

due to the fact that

Bw]

oz

= A U(yo) for x, > By ¥,
()

z=0

The second order solution, wz, may be obtained using a modified form of
equation (B48) to define ¥y within the integrand
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2 C2 .20 1A]

wz = - = Im f e  .CoS A-I V(n-B].YO)(n'*iyo) -
B]YO -
iy T n+1"y + 4/ n-ByY
+ —29- Log V o V 120 dn (856)

vn+1’yo B \/—;Blyo
To shorten the notation let
V] =\fn—-_B]To

2 -iA X iy o fuv
-2 1 7o o 1 .
Yy = - Im [e cosh, f vov]dn t f d”(v g ) dn} (B57)
o 1
Blyo B1%o
1A i
Replacing e cosA] by ErT and evaluating the two integrals results in
1 _

the expression

2C .| 2x +(i-Bq)y y 2(i+8,)? v_+v
_ 2 i 0 170 0 1 o 1
q;z = - = Im 1'+B] [ ) VoY1 - 8 Log (\’o'\’])

iyo 2x0+yo(i-81) VotV
2 [ 2 £og (\)O-\)] - Yo (858)

Upon collecting like terms the expression becomes

2x0-y0(1'+381 ) . (]+381 i) VotV
Yo = - 7 Im 2(T-78,) VoV1 F Yol -7 yo) Log (\)0-\)]

o VT o (@52
= on - Blyo
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Thus, expressions for the solutions of the first and second order boundary
value problems are now defined by equations (B48) and (B59) , and it only
vemains to obtain the pressure coefficient in terms of these solutions. By
definition, the pressure coefficient cp is given in physical coordinates
Xs y by

cp(;ays()) ==-2 [(b; (;’y:O) + ‘ik¢ (;:y’O)] (360)

where 6(X,y,0) obtained by the e expansion process is given as

¢(‘isy30) = eikMZX/Bz (’po + GIP-I + 8211'2 ... )
hod » 2""' 2 .
= > [e’kM x/8 wje*‘] (B61)
J=o0
Then
- 3(1P-€j) 2 1 ocum23 a2
L= J° ikM J| 1kM*x/8B
% j_z; [ 3% g2 11’3 ] e
>y [alwse’) R
ke = ["_a%c_" + é—’é 4 J] LIKNZR/p2 (B62)
J=0
Therefore
C. =-2 i: _a..(_lb_sj_)_ P | S eikMz;(/Bz (B63)
p 4 % g2 Vi®
J=0

Now Yy may be restated in stretched and scaled coordinates as being
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22 iy
tp] =~ Im4e cos A] {xo-slyo \fxoﬁyo

iy X +iy  + 4/ x_ -8B,y
,,____o_ug[\(o 0 \{ 0 'lo] (B64)

¢ VXo*i¥o = V %5 B1Yg

Upon redefining’

= + 1
Vo on Yo

V1T Y% "~ 1Yo

iA .
1 _ i

e COSA] = :‘r_—’_g]—

o j Y, VotV
WWeE-a I"‘[Hs] VoV * 7 Log [vo-v]

and the expression given in physical coordinates (X,y) is obtained by

i X_ Y tanh 4o g
replacing X, by s Yo by < and B] by 8 to yield

o i == iy, [ %™
by = - 7 IMq3Eant Vo1 T 7 499 (-\; = (865)
o 1

<
it

where _'0 Y x+igy
51 = \[ x-ytanA

Equation (B65) along with its derivative with respect to X may be inserted
into equation (B63) to give the pressure coefficient due to the first order
solution as



rdmSEn

m_J a ooy ik [ ==
c =4 — Im ([B”ta"“vo) *rgz Im [1B+tan Vo 1]

p
™48
+ ZX;E Im (1 Log[———v°+v]]> . eikMzY/ B

____l“ a—

(866)
Yo ™M

Collecting terms and evaluating the imaginary parts of the equation results
in the pressure coefficient given in physical coordinates due to the first

order solution given as

(1 ajeVz /{1 ik =
C = — 4= — + — \/ x-ytanA
P T 32’2 (Vx-ytanA g2

¢ (B Sgn(y,;) /4;2+82y2 - ; + tanA “_x-2+62y2 + ;)

+ 3KY pog Vx2+82y 45y tani+ V2 Vx-ytana V {X2+82y24x
g2 \[:5__3—3 7 - . SO I
x2+82y2+x-ytanA- 2 VX-ytanh | { x2+82y2+X

(867)

: 2102
e1kM x/B

where —B'R = '\182+tan21\
y = n-yg

A= eH(l-ikxc)
X,y = physical coordinates

The pressure coefficient due to the second order term may be obtained by
using equation(B55) , equation (B63) , equation (B65) and applying the
above procedure to yield
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(2) = 4 1 [ ik / 2xtanA-(3tan2A+82) ] —
¢, (%y,0) = = 5,2 tanA + (B )( 7 ) 12
v, Sgn (X.y) [ i
B2 B2
+ (ik)-!is n (X.y) tan”) ———'2H3;‘
ET 2 g Y '_[_-U,lz
e —— _
+ X [he (m) (;_3ztam\) 2og T vk ke
B RZ 3 e ——
T+\)-I ‘2\)]]-12
(868)
where
ER, = \/ B2+tan?A,
vy = Vxytana, X = £=X¢
7= VT a7
— _.[T*x
H2 2
= o JIx
H3 2
: 2

Cp=v- 1kz A

The sum of equations (B67) and(B68) will provide proper change in
boundary conditions at the corner of a leading edge control surface. These
expressions need to be modified such that the planform boundary conditions
are satisfied at the edges of the planform while maintaining the strength of
the singularities along the side edges of the control surface. The functions
that satisfy these constraints are described in the main section of thé
document following the loading function developments of Landahl.
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APPENDIX C

RN

A CAUTION REGARDING PLANFORMS WITH DISCONTINUQOUS EDGES; AND A PROVISION
FOR INCLUDING EFFECTS OF AIRFOIL THICKNESS VIA LOCAL LINEARIZATION

Suggestions are made for modifying analytical procedures used in obtaining
loadings on discontinuous planform shapes, and for modifying 1ifting surface
boundary conditions w/V such that the physical filow pressure distributions
are more readily simulated by the theoretical pressure distributions.

Modification of Planforms Having Discontinuous Shapes’

Analytiéa] difficulties may be encountered in predicting the aerodynamic
loadings on planforms having analytic discontinuities in the planform shape
definition. Figure 50 represents a typical analysis planform where first
derivative discontinuities in the shape definition exist and may provide
inconsistent results if the spanwise distribution of collocation stations
contain a control point located at or very near the spanwise discontinuity
station.

v

planform
discontinuity
stations

X

Figure 50 .- Typical Analysis Configuration with a Discontinuous Shape Definition-
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The mathematically derived downwash sheets obtained from an evaluation of
the downwash integral will exhibit singularities whenever collocation
stations are located at the planform spanwise discontinuity stations. The
singularities are due to the over-simplified manner in which the pressure
distributions are assumed to exist over the planform. The assumed _
pressure functions are distributed continuously over the surface in such a
manner that the planform is completely covered regardless of the analytic
continuity of the planform definition. If the planform definition con-
tains sharp breaks or discontinuities in its first derivative definition,
then the pressure distributions and resulting spanwise loadings will also
exhibit discontinuities at the same spanwise stations. It is the discon-
tinuous first derivative of spanwise loadings that cause the numerical
problems and produce singularities in the predicted downwash sheets. The
spanwise loading discontinuities may be removed by using a suitable pres-
sure distribution that is analytically continuous in its spanwise direction.
However, no such distributions have been formulated nor used within the
present program development since it is obvious that there are other means
available for obtaining reasonable results other than overemphasizing the
effects of localized flow in regions of planform discontinuities. The
problem of downwash singularities may be circumvented by smoothing the
planform discontinuities or by keeping the spanwise location of collocation
stations well away from the troublesome regions. However, numerical prob-
lems do exist and the analyst should be cognizant of the potential problem
and to what extent that the downwash distributions may be distorted in the
regions of planform discontinuities.

The extent of downwash distortion may be determined by evaluating the down-
wash integral equation for the steady flow case given the following form:

S

Xt
o = [k [ | = ]dﬁ}yg“'-‘n (cy)
-S X
L

\/(X-E)2+82(.Y-n)2

In this example, f(n) is taken to be the spanwise pressure function
corresponding to an ellipse, f(n) =V52 - n2 ; and g(&,n) is the
chordwise pressure function given as

glem) = Dxy(n) - 177/ [ g -x,(m 172
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Also, the plapform being evaluated is a delta wing having a discontinuous
planform definition at the center Tline.

Performing the indicated differentiation. with respect to n in equation (C1)
and retaining only the essential terms that contribute to the singularity
problem results in the following expression:

Wix, y) = [ J' £(n )39(5,71)[1* \/(xx'e ]d&] —g'l—n- (c2)

-£)2+82 (y-n)?

The ag%%}n)term has a finite discontinuity at the planform center line

having equal but opposite signs on either side of the center line.

To shorten the expression let the chordwise integral be defined as:

X
JONEI RO - e ] a (c3)
X Jix-6)2482(y-n)2

And Tet H,(n) be H(n) when the left hand side derivative of Egéﬁiﬂl
used in equation (C3) ; also let H.(n) be H(n) of equation (C3) using

the right hand side derivative of 29%%421

Then the shortened form of equation (C2) becomes:
s

Wx y) = W) dn_ (ca)
-S
Equation (C4) may be evaluated by adding and subtracting the function
Hz(“) over the integration 1nterva1 oS,
= d
Wix, y) = f Hy () fH (m (c5)
' -s

S S
[ n_ o f REVCLS
0 0
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The second and third integrals of (C5) are evaluated by making a con-
tinuous extention of the definition of gﬁﬁé&ﬂ? across the centerline

[}
to the right hand tip atn=s.

The integrals may be combined to provide the expression

- s d s
H(x,y) = f H,L(n)y_—: - f
-s

dn 3 dn
Ol ym t B g
0 0

Singularities at n = y are removed from the integral and evaluated
separately as shown by the following:

S S
Foay) = [ D) - B 1582+ wy f ;30
- -s
S S
3 R R RO B E= e RO -
0 0
S S
) RO RN R b NN
0 0

The only terms containing singularities (with the restriction that the
downwash stations are contained in the interval -s<y<s) are the terms

having an integral form of
s

dn
_/.y -n

0

Equation (C7) may then be expressed as having singular and non-singular
terms that take the form of:

Wix,y) = [ H.(y) - H (¥) 1 1n|y] + Regular Terms

and the limiting value of W(x,y) tends to infinity as y—so.

(c6)

(c7)

(c8)

(€9)
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Thus, the downwash sheet will exhibit unrealistically large values of
downwashes whenever a downwash chord is placed near a planform disconti-
nuity station and is due solely to the manner in which the pressure load-
ings are assumed to exist on the boundaries of the planform.

There is an obvious solution to this problem (see reference 8) in that

the derivative of the spanwise loadings may be made continuous by smoothing
the planform discontinuities. An example of how smoothing of planform dis-
continuities affects the downwash distribution is shown in figure 51.

T ' \"A
SECOND DERIVATIVE

T X CONTINUITY STATION

-~

30

20—

<|=si

10 —

Y/5

Figure 51.- Spanwise Downwash Distribution Resulting from Various Apex
Smoothing Values
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The clipped delta planform shown in figure 51 has been modified in the
region of the apex at the centerline to praduce a continuous first deriva-
tive definition of the planform across the centerline. The method se-
lected to smooth the shape definition is one of applying a function
having a continuous first derivative that is zero at the centerline and
is also continuous in the second derivative at the spanwise matching sta-
tion. This particular smoothing function provides derivative continuity
with the least distortion in planform definition. Downwash values ob-
tained at spanwise stations along the 50% chordline are shown in the
lower part of figure 5! . The downwash distribution near the planform
centerline does become singular for the pointed apex case. However, the
downwashes take on more realistic values whenever the apex discontinuity
is removed by applying a small amount of smoothing.

The spanwise distortion in downwash sheet is only slightly affected by
redefining the planform shape. However, caution should be exercised in
applying large amounts of smoothing since the redefined shape may provide
a poor approximation of the original planform shape.

The above discussion has been presented to identify a potential problem

that may arise in predicting the loadings on discontinuous planforms and
to suggest a method to alleviate the problem, The suggested smoothing

technique is not available within the present computer program, however,
an alternate method is suggested such that reasonable results may be ob-
tained without redefining the planform shape.

An alternate method suggested by other authors is one of applying engineer-
ing judgement to the placement of spanwise collocation stations in regions

of planform discontinuities. The downwash distribution shown in figure 51
indicates that the distributions are only slightly affected at small dis-
tances away from the discontinuity station. The amount of distortion will

be the greatest near the centerline of a highly swept planform since this is
the Tocation where the largest difference in the spanwise loading derivative
exists. Planforms having leading and trailing edges defined by a combination
of straight T1ine segments for which differences in spanwise slopes are small
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will produce even smaller distortions in the downwash description than is
observed for the centerlines station. Consequently, it is suggested that
the placement of the spanwise collocation stations (downwash chords) is
such that the stations are located at least a small distance away from any
planform discontinuity station.

Although application of planform smoothing or positioning of collocation
stations may appear to be an artificial method to bypass the source of the
problem, these methods will provide reasonable results for the aerodynamic
loadings without being overly encumbered by localized flow conditions that
contibute only in a small way to final load definitions.

Suggested Modification of Boundary Conditions w/V

From an operational standpoint, it appears that if a local linearization is
used, that is if the linearized boundary conditions w/V are modified to include
local velocities due to airfoil thickness the resulting theoretical pressure
distributions will simulate the physical flow conditions more accurately.
Lifting surface theory solutions using assumed mode-kernel function approach
usually provide results that correlate well with experimental results. An
example of the correlation of theoretical-experimental results is presented

for the analysis planform shown in figure 52.

e 52.7—'—’|

~---- ROWS OF PRESSURE ORIFICES  / / )
025 CHORD OF NACA 2/ . __
64A010 SECTIONS
----------- o
NACA 64A010 ©
SECTION -
0
-\
~

Figure 52.- Experimental Planform of NACA RM A51G31 (dimensions in cm)

141



142

// ”
Chordwise pressure distributions were obtained at seven spanwise locations |
as indicated in the figure. The comparisons of theoretical-experimental , 
results are shown in figure 53 for the pressure chord located at y/s = .$31

for M = 0.80 and a = 4°.

12 1
® ~— EXPERIMENT (NACA RM A51G31)
10 ———— ZERQ THICKNESS BOUNDARY CONDITIONS

o) .2 4

_ 6

X/C

Figure 53 .- Experimental and Zero Thickness Theoretical Pressure Distribution
at y/s = 0.831, M =0.80, a = 4°

The resulting theoretical pressure distribution was obtained using the
standard linearized boundary conditions applicable for zero thickness 1ift-
ing surfaces. It appears that a reasonable correlation is obtained on the
average in that the theoretical distribution does approximate the experi-
mental values in an average sense over the length of the streamwise chord.
Theoretical pressures forward of the midchord are smaller than experimental
values and are greater than experimental values for stations aft of the
midchord.



The analysis was revised using a modification on the 1ifting surface boundary
conditions such that the local velocity due to symmetrical thickness distri-
bution is used instead of applying the uniform velocity distribution of a
zero thickness 1ifting surface.

That is, the boundary condition of the integral equation.was obtained from
the definition
9Z. 0z
r _ 1 Dz _ 1[_41 _a_x_]
Hj(x.y.o) =Vt - vlst Yt st
where zjrepresents the displacement of the surface and is a function of time(t).

32,
3};_,_, the slope of the surface at (X.,y).

%%- is usually taken to be equal to the remote velocity V, and for a zero
thickness airfoil section this may be correct. However, physical experiments
are conducted on finite thickness airfoil sections having local velocities

that are not uniform over the chord length.

Consequently, the %%- term should represent the local flow velocity VLoca] at
collocation stations in making a comparison between theoretical and real

flow results.

The modified boundary conditions applicable to finite thickness airfoil sec-

tions are then defined as:
1 9z. 3z

. J1[% % ]
Hj(x,y,o) V'[ 5t T 3% VLocal

vLocal is defined as being the steady streamwise velocity distribution that
differs from V due to thickness effects only, and may be obtained from ex-
perimental results or by using the theoretical distributions of reference 17.

Theoretical results shown in figure 54 represent analyses using zero thick-
ness and finite thickness boundary conditions and it is evident that in

this case more accurate simulation of the physical flow results are obtained
using local boundary conditions that incorporate finite thickness effects.
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Theoretical pressure distributions forward of the midchord station approach
the experimental values in a better fashion than do the results using zero
thickness boundary conditions. Also, the theoretical distributions near
the trailing edge predict the change in sign in pressures as indicated in
the experimental results.

12
© ~~ EXPERIMENT (NACA RM A51G31)
w—— ZERO THICKNESS BOUNDARY CONDITIONS
1'0 I == FINITE THICKNESS SOUNDARY CONDITIONS
8t
ACp
.6 ~
a4t
2t
(o) )
0 2 4 6 . 10
X/C

Figure 54 .- Comparison of Pressure Distributions Predicted by Zero Thickness
and Finite Thickness Boundary Conditions at a Semi-Span Station
y/s = 0.831, for M = 0.80 and o = 4°

Although no large changes appear in the distribution using the modified
boundary conditions, it does appear that the physical flow conditions are more
accurately simulated at least for this steady flow test configuration.

Validity of applying local linearization of boundary conditions within the
unsteady case may be questioned on the basis that the kernel function has not
been changed to reflect the local linearization effects.



However, a numerical experiment has been accomplished to evaluate the
effects of- local 1inearization on the unsteady pressure distributions using the
test configuration shown in figure 55.

Y
I
25° LOCATION OF PRESSURE
ORIFICES
|
0.60m y/s -I 0.28 |

| | i
o
INNER | |
—e FLAP l | I
| |
! l
|

0.41m QUTER
FLAP |

0.18m

0.88m I —J_

X

Figure 55 - Experimental Planform of Side-by-Side Control Surface Arrangement
Showing Spanwise Location of Pressure Measuring Stations.

Results of this investigation are shown in figure 56 for the in-phase part
of the resulting pressure distributions and the out-of-phase part is presented
in figure 57.

The theoretical pressure distributions of the in-phase part approach the
experimental values in a better fashion than do the results using zero thickness
boundary conditions. The out-of-phase theoretical distributions remain almost
invariant over the control surface and are changed only by very small amounts
forward of the hingeline.
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BOUNDARY CONDITION)
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Figure 56 - In-Phase Pressure Distribution for Both Flaps Oscillating with
the Same Phase and Amplitude. &= 0.82° ,k= 0.372 ,M ¥ 0.0
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0
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Figure 57 - Out-of-Phase Pressure Distribution for Both Flaps Oscillating

146 with the Same Phase and Amplitude. 8= 0.82°, k= 0.372, M¥ 0.0
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It should be noted that the validity of including local linearization
effects within the boundary conditions can not be generalized on the basis of
this single example.

‘However, it appears that the physical flow conditions may be more
accurately simulated and may contribute significantly to the successful design
of energy absorbing Stability Augmentation Systems provided that good correla-
tion between experimental and theoretical results can be established over the

frequency range of interest.

A program option is available for modifying the boundary conditions
within the analysis and the data format along with limitations are given in

reference 4.
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