8 research outputs found

    Application of Spectral Remote Sensing for Agronomic Decisions

    Get PDF
    Remote sensing has provided valuable insights into agronomic management over the past 40 yr. The contributions of individuals to remote sensing methods have lead to understanding of how leaf reflectance and leaf emittance changes in response to leaf thickness, species, canopy shape, leaf age, nutrient status, and water status. Leaf chlorophyll and the preferential absorption at different wavelengths provides the basis for utilizing reflectance with either broad-band radiometers typical of current satellite platforms or hyperspectral sensors that measure reflectance at narrow wavebands. Understanding of leaf reflectance has lead to various vegetative indices for crop canopies to quantify various agronomic parameters, e.g., leaf area, crop cover, biomass, crop type, nutrient status, and yield. Emittance from crop canopies is a measure of leaf temperature and infrared thermometers have fostered crop stress indices currently used to quantify water requirements. These tools are being developed as we learn how to use the information provided in reflectance and emittance measurements with a range of sensors. Remote sensing continues to evolve as a valuable agronomic tool that provides information to scientists, consultants, and producers about the status of their crops. This area is still relatively new compared with other agronomic fields; however, the information content is providing valuable insights into improved management decisions. This article details the current status of our understanding of how reflectance and emittance have been used to quantitatively assess agronomic parameters and some of the challenges facing future generations of scientists seeking to further advance remote sensing for agronomic applications

    Winds of Change: A Century of Agroclimate Research

    Get PDF
    Climate has been of primary concern from the beginning of agricultural research. Early in the 20th century, climatology and agronomy evolved separately, focusing primarily on production agriculture and crop adaptation. Concepts developed include thermal units and water use efficiency. The integrated discipline of agroclimatology developed in the mid-20th century. As theoretical understanding evolved, numerous papers related to agroclimatology were named Citation Classics. Spectral properties of plants and soils were identified that underpin today’s remote sensing technologies. Commercialization of instrumentation enhanced our ability to efficiently collect data using standardized methods. Private and public-sector partnerships advanced research capacity. Later in the 20th century, research focus shifted toward integrating knowledge into crop growth and agronomic models. Remote sensing provided capacity to gain theoretical and practical understanding of regional scale processes. In the early 21st century, recognition of earth as a system along with inter-related human systems is driving research and political agendas. There is a pressing need to change our data-rich to an information-rich environment. The emerging cyberinformatics field along with natural resource and agricultural system models allow us to apply climate information to assessments and decision support related to water supply, production, environmental management, and other issues. Solutions to today’s problems require interdisciplinary and multi-sectoral teams. While needs have never been greater, fewer universities maintain critical mass required to off er advance degrees in agroclimatology. It will be increasingly important that agrclimatology attract top students and provide training and practical experience in conducting integrated systems research, communications, and team skills

    Sustainable pest management for cotton production. A review

    No full text
    corecore